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Abstract— Components which are constructed via the 

application of basic instructions of modern processors are 

common in symmetric ciphers targeting software 

applications; among them are polynomials over ℤ𝟐𝒏, which fit 

𝒏–bit processors. For instance, the AES finalist RC6 uses a 

quadratic polynomial over ℤ𝟐𝟑𝟐. In this paper, after some 

mathematical examination, we give the explicit formula for 

the inverse of RC6-like polynomials over ℤ𝟐𝒏 and propose 

some degree-one polynomials as well as some                                

self-invertible (involutive) quadratic polynomials with better 

cryptographic properties, instead of them, for the use in 

modern software-oriented symmetric ciphers. Then, we 

provide a new nonlinear generator with provable period, 

which could be used in stream ciphers and pseudo-random 

number generators. 
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I.  INTRODUCTION 

    Some designers of symmetric ciphers use components 

which are constructed by basic instructions of modern 

processors in the design of software-oriented ciphers. For 

example, the AES finalist block ciphers MARS [1] and 

Twofish [2] use multiplication and addition in ℤ𝟐𝟑𝟐, and the 

eStream project stream ciphers Rabbit [3] and Sosemanuk 

[4] (selected for software profile) use multiplication in ℤ 

and ℤ𝟐𝟑𝟐. Many lightweight ciphers are also use basic 

instructions; among them is the ARX-based block cipher 

SPECK [5]. 

Since polynomials over ℤ𝟐𝒏 could be implemented by only 

the operations of addition and multiplication mod 𝟐𝒏, 

which are built-in instructions of modern 𝒏–bit processors, 

so, low-degree polynomials are efficient over these 

processors. For instance, the AES finalist block cipher RC6 

[6] utilizes a quadratic polynomial over  ℤ𝟐𝟑𝟐. One of the 

drawbacks of this polynomial is that it has a large set of 

fixed-points. In this paper, after some mathematical study, 

we present the explicit formula for the inverse of RC6-like 

polynomials in general and, we propose                                 

some degree-one polynomials along with some                  

self-invertible or involutive quadratic polynomials with 

only two fixed-points, for the use instead of them, in design 

of modern software-oriented symmetric ciphers. With the 

aid of the proposed inverse for RC6-like polynomials, the 

presented degree-one polynomials whose inverses are 

acquired easily and the proposed self-invertible quadratic 

polynomials whose inverses are the same as themselves, 

the designers of symmetric ciphers could use these kinds of 

polynomials not only in Feistel schemes like the case of 

RC6, which do not need the inverse of components, but 

also in SPN structures.  

Then, based on the mathematical investigation, we propose 

a new nonlinear generator with provable period. This 

nonlinear generator could be used in stream ciphers and 

pseudo-random number generators. 

In Section II, we give preliminary notations and definitions. 

Section III is dedicated to theoretical aspects of the paper. 

In Sections IV we present some applications of the 

mathematical study and, Section V is the conclusion. 
 

II. PRELIMINARY NOTATIONS AND DEFINITIONS 
 

     Throughout the paper 𝑘, 𝑚, 𝑛, 𝑟, 𝑠 and 𝑡 are natural 

numbers. We denote the ring of integers modulo 2𝑛 by ℤ2𝑛, 

the addition in ℤ2𝑛 by +, the left shift operation by ≪ and 

the complement of 𝑎 ∈ ℤ2𝑛 by 𝑎̅. Note that 2𝑛 − 𝑎 = 𝑎̅ + 1. 

The greatest 𝑡 such that 2𝑡 divides 𝑎 ∈ ℤ2𝑛 is denoted by 

𝐩2(𝑎), the unique inverse of an invertible element 𝑎 in ℤ2𝑛 

by 𝑎−1  𝑚𝑜𝑑  2𝑛, the Hamming weight of 𝑎 ∈ ℤ2𝑛   by 𝐰𝐭(𝑎) 

and the 𝑛 times composition of a bijection 𝑓 by itself, by 

𝑓(𝑛). We denote the number of fixed-points of a bijection 

𝑓: 𝐴 → 𝐴, i.e. the number of 𝑥 ∈ 𝐴 such that 𝑓(𝑥) = 𝑥, by Θ𝑓.  
 

Let 𝑅 be a (finite commutative) ring with identity and          

𝑟 ∈ 𝑅. If we have 𝑟𝑚 = 0 for some 𝑚, then 𝑟 is said to be 

nilpotent. We denote the least  𝑡  such that 𝑟𝑡 = 0  by  𝒩𝑟. 
 

A mapping 

𝑓: ℤ2𝑛 → ℤ2𝑛 , 
 



 

 

𝑓(𝑥) = ∑ 𝑎𝑖𝑥𝑖   𝑚𝑜𝑑  2𝑛

𝑚

𝑖=0

, 

 

is called a polynomial over ℤ2𝑛. When 𝑚 = 1, we say that 

𝑓 is degree-one and when 𝑚 = 2, we call 𝑓 quadratic. 

Suppose that 𝑓: ℤ2𝑛 → ℤ2𝑛 is a polynomial such that 𝑓 is 

equal to its compositional inverse; in other words: 
 

𝑓(2)(𝑥) = 𝑥, 
 

for any 𝑥 ∈ ℤ2𝑛. In this case, we say that 𝑓 is a                      

self-invertible or involutive polynomial. 

     

III. THEORETICAL ASPECTS 

    In this section, we lay a theoretical foundation for the 

applications which are presented in Section IV. Firstly, we 

give the explicit formula for the inverse of elements of the 

form  2𝑡 − 1  in  ℤ2𝑛. 
 

Theorem 1.  The inverse of 2𝑡 − 1 modulo 2𝑛, is of the 

following form: 

2𝑡 − 2𝑡⌊
𝑛
𝑡

⌋+1 − 1 +
2𝑡+1(2𝑡−1 − 1) (2𝑡(⌊

𝑛
𝑡

⌋−1) − 1)

2𝑡 − 1
 . 

 

 

Proof. Let 𝑛 = 𝑡𝑘 + 𝑟, 0 ≤ 𝑟 < 𝑡. Since the inverse of odd 

numbers in ℤ2𝑛 is unique, it suffices to show that the 

multiplication of  2𝑡 − 1  by the presented inverse is equal 

to 1 modulo 2𝑛: 
 

(2𝑡 − 1) (2𝑡 − 2𝑡𝑘+1 − 1 +
2𝑡+1(2𝑡−1 − 1)(2𝑡(𝑘−1) − 1)

2𝑡 − 1
) 

 

       = 22𝑡 − 2𝑡(𝑘+1)+1 − 2𝑡 − 2𝑡 + 2𝑡𝑘+1 + 1 
 

                       +2𝑡(𝑘+1) − 22𝑡 − 2𝑘𝑡+1 + 2𝑡+1 
 

                   = 1    𝑚𝑜𝑑   2𝑛. 
 

Note that, since  𝑡 > 𝑟,  so 
 

                   2𝑡(𝑘+1)+1 = 2𝑡(𝑘+1) = 0   𝑚𝑜𝑑   2𝑛.                  ∎ 

 

We know that 𝐰𝐭(2𝑡 − 1) = 𝑡. In the next theorem, we 

give the Hamming weight of the inverse of  2𝑡 − 1, modulo 

2𝑛. 
 

Theorem 2.  Let  𝑛 = 𝑡𝑘 + 𝑟,  0 ≤ 𝑟 < 𝑡 , and  
 

                          𝑠 = (2𝑡 − 1)−1   𝑚𝑜𝑑   2𝑛. 

Then, 

𝐰𝐭(𝑠) = {

(𝑡 − 1)(𝑘 − 1) + 𝑡 + 𝑟 − 1        𝑟 ≥ 1,

(𝑡 − 1)(𝑘 − 1) + 𝑡                        𝑟 = 0.
 

 

Proof. Regarding Theorem 1, 𝑠 can also be written in the 

following form: 

       𝑠 = 2𝑡 − 2𝑘𝑡+1 − 1 + 2(2𝑡−1 − 1) ∑ 2𝑖𝑡

𝑘−1

𝑖=1

 

 

= (2𝑡 − 1) + (2𝑡−1 − 1) ∑ 2𝑖𝑡+1 + (2𝑛 − 2𝑘𝑡+1).

𝑘−1

𝑖=1

 

 

Since 𝐰𝐭(2𝑡 − 1) = 𝑡, 𝐰𝐭(2𝑡−1 − 1) = 𝑡 − 1, and 

regarding the fact that there are no overlaps between blocks 

of 1 in the binary representation of 𝑠, so we have 
 

𝐰𝐭 ((2𝑡 − 1) + (2𝑡−1 − 1) ∑ 2𝑖𝑡+1 + (2𝑛 − 2𝑘𝑡+1)

𝑘−1

𝑖=1

) 

 

              = (𝑡 − 1)(𝑘 − 1) + 𝑡. 
 

Now, we should compute 𝐰𝐭(2𝑛 − 2𝑘𝑡+1), which is equal 

to 0 when 𝑟 = 0 and to 𝑟 − 1, otherwise.                            ∎ 
 

Next, we give the explicit formula for the inverse of 

elements of the form 2𝑡 + 1  in  ℤ2𝑛. 
 

Theorem 3.  The inverse of 2𝑡 + 1 modulo 2𝑛, is of the 

following form: 

1 − 2𝑡(2⌊
𝑛
2𝑡

⌋+1) +
2𝑡 (22𝑡⌊

𝑛
2𝑡

⌋ − 1)

2𝑡 + 1
 . 

 

Proof. Let 𝑛 = 2𝑡𝑘 + 𝑟, 0 ≤ 𝑟 < 2𝑡. Similar to the proof of 

Theorem 1, we have 
 

         (2𝑡 + 1) (1 − 2𝑡(2𝑘+1) +
2𝑡(22𝑘𝑡 − 1)

2𝑡 + 1
) 

 

                   = 2𝑡 + 1 − 22(𝑘+1)𝑡 − 2(2𝑘+1)𝑡 + 2(2𝑘+1)𝑡 − 2𝑡 
 

                 = 1    𝑚𝑜𝑑   2𝑛 . 
 

Again, note that 
 

                                22(𝑘+1)𝑡 = 0    𝑚𝑜𝑑   2𝑛 .                         ∎ 

 

Now, we give the explicit formula for the inverses of 3,5 

and 7 mod 2𝑛, which are used in Section IV, to obtain the 

explicit formula for the inverse of RC6-like polynomials in 

general. 
 

Corollary 1.  Regarding Theorem 1 and Theorem 3, we 

have 
 

3−1  𝑚𝑜𝑑   2𝑛 = 3 − 22⌊
𝑛
2

⌋+1 +
8

3
(22(⌊

𝑛
2

⌋−1) − 1), 
 

5−1  𝑚𝑜𝑑   2𝑛 = 1 − 22(2⌊
𝑛
4

⌋+1) +
4

5
(24⌊

𝑛
4

⌋ − 1), 

 

7−1  𝑚𝑜𝑑   2𝑛 = 7 − 23⌊
𝑛
3

⌋+1 +
48

7
(23(⌊

𝑛
3

⌋−1) − 1). 
 

 

Note that, there are 𝑂(𝑛) algorithms [7] for computing the 

inverse of odd elements in  ℤ2𝑛; but Theorem 1, Theorem 

3 and Corollary 1 give 𝑂(1) algorithms for computing these 

inverses in some special cases.  

 

We know that 𝐰𝐭(2𝑡 + 1) = 2. In the following theorem, 

we give the Hamming weight of the inverse of 2𝑡 + 1, 

modulo 2𝑛 . 
 

Theorem 4.  Let  𝑛 = 2𝑡𝑘 + 𝑟,  0 ≤ 𝑟 < 2𝑡  and  
 



 

 

                          𝑠 = (2𝑡 + 1)−1   𝑚𝑜𝑑   2𝑛. 

Then, 

𝐰𝐭(𝑠) = {
𝑘𝑡 + 1                                   0 ≤ 𝑟 ≤ 𝑡,

(𝑘 − 1)𝑡 + 𝑟 + 1                 𝑡 < 𝑟 < 2𝑡.
 

 

Proof. Regarding Theorem 3, 𝑠 can also be written in the 

following form: 

             𝑠 = 1 − 2(2𝑘+1)𝑡 − (2𝑡 − 1) ∑ 2(2𝑖+1)𝑡

𝑘−1

𝑖=0

, 

 

       = 1 + 2𝑛 − 2(2𝑘+1)𝑡 + (2𝑡 − 1) ∑ 2(2𝑖+1)𝑡

𝑘−1

𝑖=0

. 

 

Again, since 𝐰𝐭(2𝑡 − 1) = 𝑡, so, 

 

𝐰𝐭 (1 + (2𝑡 − 1) ∑ 2(2𝑖+1)𝑡

𝑘−1

𝑖=0

) = 𝑘𝑡 + 1.  

 

Therefore, we should verify 𝐰𝐭(2𝑛 − 2(2𝑘+1)𝑡), which is 

equal to 0 when 0 ≤ 𝑟 ≤ 𝑡 and  𝑟 + 1, otherwise.              ∎ 
 

The next lemma is used in Remark 1. Its proof is 

straightforward. 
 

Lemma 1: Let 𝑅 be a (finite commutative) ring with 

identity and 𝑟 ∈ 𝑅 be nilpotent with 𝑘 = 𝒩𝑟. Then we have 
 

 

(𝑟 − 1)−1 = −1 − 𝑟 − 𝑟2−. . . −𝑟𝑘−1, 
and 

(𝑟 + 1)−1 = {
1 − 𝑟 + 𝑟2 − 𝑟3+. . . +𝑟𝑘−1         𝑘  𝑜𝑑𝑑,

1 − 𝑟 + 𝑟2 − 𝑟3+. . . −𝑟𝑘−1       𝑘  𝑒𝑣𝑒𝑛.

 

 

Remark 1: In the mentioned four theorems, our approach 

was guessing the pattern of the inverses. Another (direct) 

proof of these theorems, which is based on Lemma 1, is as 

follows: Let 𝑛 = 𝑡𝑘 + 𝑟,  0 ≤ 𝑟 < 𝑡. Then, 𝑘 + 1 = 𝒩2𝑡 

in the ring ℤ2𝑛. So, by Lemma 1, modulo 2𝑛, we have 
 

(2𝑡 − 1)−1 = −1 − 2𝑡 − 22𝑡−. . . −2𝑡(𝑘−1)  
 

                     = 2𝑛 − (1 + 2𝑡 + 22𝑡+. . . +2𝑡(𝑘−1)) 

 

                     = 1 + (1 + 2𝑡 + 22𝑡+. . . +2𝑡(𝑘−1))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 
 

It is not hard to see that this accords with Theorem 1 and 

Theorem 2. On the other hand, by Lemma 1, in the case that 

𝑘 is odd, modulo  2𝑛, we have 
 
 

(2𝑡 + 1)−1 = 1 − 2𝑡+. . . −2𝑡(𝑘−1) 
 

= 2𝑛 − (2𝑡 − 1 + 23𝑡 − 22𝑡+. . . +2𝑡(𝑘−1) − 2𝑡(𝑘−2)) 
 

 = 1 + (2 𝑡 − 1 + 23𝑡 − 22𝑡 + ⋯ + 2𝑡(𝑘−1) − 2𝑡(𝑘−2))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ , 
 

 

and in the case that 𝑘 is even, modulo  2𝑛, we have 
 

(2𝑡 + 1)−1 = 1 − 2𝑡+. . . +2𝑡(𝑘−3) − 2𝑡(𝑘−2) + 2𝑡(𝑘−1) 
 

 

 = 2𝑛 − (2𝑡 − 1 + 23𝑡 − 22𝑡+. . . +2𝑡(𝑘−2) − 2𝑡(𝑘−3) − 2𝑡(𝑘−1)) 
 
 

= 1

+ (2𝑡 − 1 + 23𝑡 − 22𝑡+. . . +2𝑡(𝑘−2) − 2𝑡(𝑘−3) + 2𝑛 − 2𝑡(𝑘−1))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 
 

One can check that this coincides with Theorem 3 and 

Theorem 4. Proof of next theorem can be seen in [8]. 
 

Theorem 5. Suppose that 𝑓: ℤ2𝑛 → ℤ2𝑛 with 
 

𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥   𝑚𝑜𝑑   2𝑛. 
 

Then, the quadratic compositional inverse (one of the two 

quadratic compositional inverses) of 𝑓 is the polynomial 
 

𝑔: ℤ2𝑛 →  ℤ2𝑛 , 
 

𝑔(𝑥) = 𝑐𝑥2 + 𝑑𝑥   𝑚𝑜𝑑   2𝑛, 

where 
 
 

𝑐 = −𝑎(𝑏 + 𝑎)−1(𝑏 + 2𝑎)−1(𝑏 + 3𝑎)−1   𝑚𝑜𝑑   2𝑛 , 
 

𝑑 = (𝑏 + 𝑎)−1 − 𝑐(𝑏 + 𝑎)   𝑚𝑜𝑑   2𝑛. 
 

 

In Section IV, we use Corollary 1 and Theorem 5 to present 

the explicit formula for the inverse of RC6-like 

polynomials, in general. 
 

Now, we present all the degree-one self-invertible 

polynomials over ℤ2𝑛 . 
 

Theorem 6.  All the 3.2𝑛−1 + 2 degree one self-invertible 

polynomials over ℤ2𝑛 are as follows 
 

a) 𝑓(𝑥) = 𝑥 + 2𝑛−1   𝑚𝑜𝑑   2𝑛, 
 

b) 𝑓(𝑥) = (2𝑛−1 − 1)𝑥 + 𝑣   𝑚𝑜𝑑   2𝑛,   𝑣   𝑒𝑣𝑒𝑛, 
 

c) 𝑓(𝑥) = (2𝑛−1 + 1)𝑥   𝑚𝑜𝑑   2𝑛,    
 

d) 𝑓(𝑥) = −𝑥 + 𝑤   𝑚𝑜𝑑   2𝑛 ,   𝑤 ∈ ℤ2𝑛 . 
 

Proof. Consider the equation 𝑓(2)(𝑥) = 𝑥  𝑚𝑜𝑑  2𝑛, or 
 

(𝑎2 − 1)𝑥 + 𝑏(𝑎 + 1) = 0   𝑚𝑜𝑑  2𝑛. 
 

Evaluating the equation on the points 0 and 1, we have 
 

𝑎2 = 1   𝑚𝑜𝑑   2𝑛, 
 

𝑏(𝑎 + 1) = 0    𝑚𝑜𝑑   2𝑛. 
 

Now, regarding Theorem 1 in [9], the four cases are 

acquired. Note that Case b has 2𝑛−1 and  Case d  has 2𝑛 

functions.                                                                                    ∎ 
 

The following theorem is from [10]. Note that we only give 

two of the five cases, for brevity. 
 

Theorem 7.  Let  𝑛 ≥ 6. Then the following polynomials 

over ℤ2𝑛   are self-invertible: 
 

 

  𝑓(𝑥) = −𝑥 + 2𝑟𝑣𝑥2    𝑚𝑜𝑑    2𝑛,   𝑟 ≥
𝑛−1

2
,   𝑣  𝑜𝑑𝑑, 

  𝑓(𝑥) = (1 + 2𝑛−2𝑤)𝑥 + 2𝑛−1𝑣𝑥2  𝑚𝑜𝑑 2𝑛, 𝑤, 𝑣  𝑜𝑑𝑑. 

 

The next lemma presents the number of fixed points of 

some special degree-one polynomials over ℤ2𝑛 . 
 

 

Lemma 2.  Let 𝑐 ∈ ℤ2𝑛  be odd and 
 



 

 

𝑓: ℤ2𝑛 → ℤ2𝑛 , 
 

𝑓(𝑥) = 𝑐𝑥  𝑚𝑜𝑑   2𝑛. 
 

Then the number of fixed-points of 𝑓 is Θ𝑓 = 2𝐩2(𝑐−1). 
 

Proof. Let 𝑠 = 𝐩2(𝑐 − 1). We must count the number of         

𝑥 ∈ ℤ2𝑛 such that              
 

(𝑐 − 1)𝑥 = 0   𝑚𝑜𝑑   2𝑛. 
 

For 𝑥 ∈ ℤ2𝑛 , suppose that 𝐩2(𝑥) = 𝑡. Then 𝑐𝑥 = 0  𝑚𝑜𝑑  2𝑛 

iff 𝑡 ≥ 𝑛 − 𝐩2(𝑐 − 1); and since the number 𝑥 ∈ ℤ2𝑛 with 

𝐩2(𝑥) = 𝑟  is  2𝑛−𝑟, so we have 
 

Θ𝑓 − 1 = ∑ 2𝑛−𝑖 =

𝑛−1

𝑖=𝑛−𝑠

∑ 2𝑖

𝑠−1

𝑖=0

= 2𝑠 − 1, 

 

and since 0 is also a fixed-point of 𝑓, so the lemma is 

proved.                                                                                         ∎ 
 

Corollary 2.  The number of fixed-points of the mappings        

𝑥 ⟼ (2𝑡 + 1)𝑥  𝑚𝑜𝑑  2𝑛 and 𝑥 ⟼ (2𝑡 − 1)𝑥  𝑚𝑜𝑑  2𝑛, from 

ℤ2𝑛 to itself is 2𝑡 and 2, respectively. 
 

The next lemma is used in Section IV, to construct a new 

nonlinear generator. 
 

Lemma 3.  Let   
 

𝑓(𝑥) = (2𝑡 + 1)𝑥 + 1  𝑚𝑜𝑑  2𝑛 ,    
𝑛

2
< 𝑡 < 𝑛. 

Then, 
 

𝑓(𝑚)(𝑥) = (𝑚2𝑡 + 1)𝑥 + 𝑚 + 2𝑡−1(𝑚2 − 𝑚),    𝑚 ≥ 1. 
 

 Proof. Firstly, suppose that 
 

𝑓(𝑥) = 𝑎𝑥 + 𝑏    𝑚𝑜𝑑   2𝑛. 
 

One can check that 

𝑓(𝑚)(𝑥) = 𝑎𝑚𝑥 + 𝑏 (
𝑎𝑚 − 1

𝑎 − 1
)   𝑚𝑜𝑑  2𝑛. 

Now, since 

(2𝑡 + 1)𝑚 = 

∑ (
𝑚
𝑖

)

𝑚

𝑖=0

2𝑖𝑡 = 1 + 𝑚2𝑡 +
𝑚(𝑚 − 1)

2
22𝑡 + ⋯ + 2𝑚𝑡; 

 

 

𝑚(𝑚 − 1)

2
22𝑡 + ⋯ + 2𝑚𝑡 = 0    𝑚𝑜𝑑   2𝑛; 

and 

(
𝑚
3

) 23𝑡 + ⋯ + 2𝑚𝑡

2𝑡
= 0    𝑚𝑜𝑑   2𝑛 , 

so we have 
 

      𝑓(𝑚)(𝑥) = (𝑚2𝑡 + 1)𝑥 + 𝑚 + 2𝑡−1(𝑚2 − 𝑚)  𝑚𝑜𝑑  2𝑛.   ∎ 
 

         

IV. APPLICATIONS 

    In this section, based upon the theoretical investigations 

of the previous section, we present the explicit formula for 

inverse of RC6-like polynomials in general and propose 

some degree-one as well as some self-invertible quadratic 

polynomials for usage in symmetric cryptography. Then, 

we present a new nonlinear generator with provable period, 

that could be used in stream ciphers and pseudo-random 

number generators. 
 

Consider the general form of RC6 quadratic polynomial: 
 

𝑓: ℤ2𝑛 → ℤ2𝑛 , 
 

𝑓(𝑥) = 𝑥(2𝑥 + 1)  𝑚𝑜𝑑   2𝑛 . 
 

By Theorem 5, the (compositional) inverse of 𝑓 is  
 

𝑔: ℤ2𝑛 →  ℤ2𝑛 , 
 

𝑔(𝑥) = 𝑐𝑥2 + 𝑑𝑥   𝑚𝑜𝑑   2𝑛 ,     
with  

𝑐 = −2. 3−15−17−1   𝑚𝑜𝑑   2𝑛, 
 

𝑑 = 3−1 − 3𝑐   𝑚𝑜𝑑   2𝑛. 
 

Note that the closed formula for 3−1, 5−1 and  7−1 is given 

in Corollary 1. 
 

Example 1.  Let   

𝑓: ℤ24 → ℤ24 , 
 

𝑓(𝑥) = 𝑥(2𝑥 + 1)  𝑚𝑜𝑑   24. 
 

Then, by the above discussion, the compositional inverse 

of  𝑓  is 

𝑔: ℤ2𝑛 → ℤ2𝑛 , 
 

𝑔(𝑥) = 14𝑥2 + 𝑥  𝑚𝑜𝑑   2𝑛 . 
 

In the next example, we consider the very quadratic 

polynomial of the block cipher RC6 and compute its 

compositional inverse. 

 

Example 2.  Consider  
 

𝑓: ℤ232 → ℤ232 , 
 

𝑓(𝑥) = 𝑥(2𝑥 + 1)  𝑚𝑜𝑑   232. 
 

By Corollary 1, we have 
 

3−1  𝑚𝑜𝑑   232 = 3 − 232+1 +
8

3
(230 − 1) = 2863311531, 

 

5−1  𝑚𝑜𝑑   2𝑛 = 1 − 234 +
4

5
(232 − 1) = 3435973837, 

 

7−1  𝑚𝑜𝑑   2𝑛 = 7 − 231 +
48

7
(227 − 1) = 3067833783. 

 

Now, notations as above, we have 
 

𝑐 = −2. 3−15−17−1   𝑚𝑜𝑑   232 =1308942414, 

and 

𝑑 = 3−1 − 3𝑐   𝑚𝑜𝑑   232 =3231451585. 
 

So, the inverse of the quadratic polynomial of RC6 is 
 

𝑔: ℤ232 →  ℤ232 , 
 

𝑔(𝑥) = 1308942414𝑥2 + 3231451585𝑥   𝑚𝑜𝑑   232.     
 

We consider three properties for comparing polynomials, 

from the cryptographic viewpoint: 

 

 
 



 

 

1) The number of fixed-points. 
 

2) The implementation cost of polynomials and 

their inverses. 

3) Whether they are involutions, or not. 
 

It is well-known that the number of fixed-points of         

RC6-like polynomials is 

2𝑛−⌈
𝑛−1

2
⌉
, 

 

which is a drawback, from the cryptographic viewpoint, 

and obviously, these polynomials are not involutions. On 

the other hand, in modern processors, RC6-like 

polynomials are efficient. Note that, the inverses of these 

polynomials, which are given in the present paper, are also 

efficient in modern processors; so, we could use these 

polynomials not only in Feistel schemes, where we do not 

need the inverse of mappings, but also in SPN structures. 
 

The degree-one polynomials 
 

 𝑓(𝑥) = 3𝑥    𝑚𝑜𝑑    2𝑛, 

 𝑓(𝑥) = 7𝑥    𝑚𝑜𝑑    2𝑛, 
 

have two fixed-points, by Corollary 2, and clearly are not 

involutive. The explicit formula for inverse of these    

degree-one polynomials, could be acquired based on 

Corollary 1.  Not that, we have 
 

(2𝑡 + 1)𝑥 = (𝑥 ≪ 𝑡) + 𝑥, 
 

(2𝑡 − 1)𝑥 = (𝑥 ≪ 𝑡) − 𝑥. 
 

Therefore, the implementation cost of these kinds of 

polynomials is very low, even in low-end processors, in 

which the multiplication operation has a high cost.  By 

Theorem 2 and Theorem 4, in the mentioned low-cost 

processors, the implementation cost of the inverse of these 

polynomials is high; but, all in all, in most of modern 

processors, the implementation cost of these degree-one 

polynomials and their inverses is very low. 
  
Self-invertible polynomials of the form 𝑓(𝑥) = −𝑥 + 2𝑟𝑥2 

in Theorem 7 (put 𝑣 = 1) have only two fixed-points [9] 

and are involutions; so, the implementation cost of these 

polynomials and their inverses is equal, and since we have 
 

𝑓(𝑥) = −𝑥 + (𝑥2 ≪ 𝑟)   𝑚𝑜𝑑   2𝑛 , 
 

so, these involutive polynomials have a suitable 

implementation cost in modern processors. 

 

Remark 2: We propose the degree-one polynomials 
 

𝑓(𝑥) = 3𝑥 = 𝑥 + (𝑥 ≪ 1)   𝑚𝑜𝑑    2𝑛 , 
 

𝑓(𝑥) = 7𝑥 = 𝑥 + (𝑥 ≪ 1) + (𝑥 ≪ 2)    𝑚𝑜𝑑    2𝑛 , 
 

or the involutive quadratic polynomials 
 
 

𝑓(𝑥) = −𝑥 + (𝑥2 ≪ 𝑟)   𝑚𝑜𝑑   2𝑛 , 
 
 

instead of RC6-like polynomials, for the use in modern 

processors, because of the fact that they have only two           

fixed-points and the implementation cost of them (and their 

inverses) is low. 
 

Remark 3: We believe that the self-invertible polynomials 

presented in Theorem 7: 
 

𝑓(𝑥) = (1 + 2𝑛−2𝑤)𝑥 + 2𝑛−1𝑣𝑥2  𝑚𝑜𝑑 2𝑛, 𝑤, 𝑣  𝑜𝑑𝑑. 

are not good candidates for the use in cryptography, 

because they have a large set of fixed-points [9]. Also, we 

think that the degree-one self-invertible polynomials 

should be used wittingly. For example, the polynomial 
 

𝑓(𝑥) = 𝑥 + 2𝑛−1   𝑚𝑜𝑑   2𝑛, 
 

is a (bitwise) linear mapping and only flips the most 

significant bit of the input. On the other hand, since  
 

(2𝑛−1 − 1)𝑥 + 𝑣 = (𝑥 ≪ (𝑛 − 1)) + 𝑣 − 𝑥, 
and 

(2𝑛−1 + 1)𝑥 = (𝑥 ≪ (𝑛 − 1)) + 𝑥,    
 

so, there is no effective multiplication (or good mixing, 

similar to case of 3x and 7x) in any of these degree-on      

self-invertible polynomials. It seems that the quadratic   

self-invertible polynomials are better candidates for the use 

in symmetric ciphers. 
 

In the sequel, we present a nonlinear generator, based upon 

Lemma 3. Suppose that 𝑓: ℤ2𝑛 → ℤ2𝑛 is a single-cycle                   

T-function [11], and for an initial value  
 

                                  𝑠0 = (𝑠0,𝑛−1,.., 𝑠0,0),  

let 
 

𝑠𝑖 = 𝑓(𝑖)(𝑠0) = (𝑠𝑖,𝑛−1,.., 𝑠𝑖,0),        0 < 𝑖 < 2𝑛. 
 

It is well-known that the period of {𝑠𝑖}𝑖≥0 is 2𝑛 and for a 

fixed  0 ≤ 𝑗 < 𝑛, the period of {𝑠𝑖,𝑗}
𝑖≥0

 is  2𝑗+1. For example, 

the period of the output slice corresponding to the least 

significant bit is 2. So, the cryptographic properties of the 

lower bits of the generated sequence by means of this 

single-cycle T-function is not good.  
 

We know that maximal-length LFSRs [12] have good 

statistical properties, but are linear. Consider a          

maximal-length LFSR. We denote its action on the 𝑛–bit 

value 𝑋 by 𝐿(𝑋). For an initial value 
 

𝑠0 = (𝑠0,𝑛−1,.., 𝑠0,0), 

let 
 

𝑠𝑖 = 𝐿(𝑖)(𝑠0) = (𝑠𝑖,𝑛−1,.., 𝑠𝑖,0),       0 < 𝑖 < 2𝑛 − 1. 
 
 

It is well-known that the period of {𝑠𝑖}𝑖≥0 is 2𝑛 − 1 and for 

a fixed  0 ≤ 𝑗 < 𝑛, the period of {𝑠𝑖,𝑗}
𝑖≥0

 is also 2𝑛 − 1.   
 

Here, with the aid of Lemma 3 and based on the above 

discussion, we propose a nonlinear generator based on        

T-functions and maximal-length binary LFSRs. The           

pseudo-code of the proposed generator is given in 

Algorithm 1. 

 

 



 

 

Algorithm 1 

Input:  

A non-zero 𝑛-bit initial state 𝐼 ≠ (0, … ,0); 

a maximal-length LFSR (whose action on the input  𝑋 we 

denote  by  𝐿(𝑋));       

and  
𝑛

2
< 𝑡 < 𝑛. 

Output:  

A sequence of 𝑛-bit words with period 2𝑛 − 1. 

Begin 

    𝑆 = 𝐼 

    For 𝑖 = 1 to 2𝑛 − 1 

           Output  𝑆 + ((𝑆2 − 𝑆) ≪ (𝑡 − 1))  𝑚𝑜𝑑  2𝑛 

            𝑆 = 𝐿(𝑆) 

     End (For) 

End (Algorithm) 
 

 

Now, we show that the period of the output sequence of 

Algorithm 1 is 2𝑛 − 1: Consider a single-cycle T-function 

𝑓: ℤ2𝑛 → ℤ2𝑛 and a maximal-length LFSR whose action on 

input 𝑋 we denote by 𝐿(𝑋). Fix a nonzero element 𝐼 ∈ ℤ2𝑛 . 

Also, fix an arbitrary element 𝐶 ∈ ℤ2𝑛 and let  
 

𝑠𝑖 = 𝑓(𝐿(𝑖)(𝐼))(𝐶),    0 < 𝑖 < 2𝑛 − 1. 
 

Since we have 
 

{𝐼, 𝐿(𝐼), 𝐿(2)(𝐼), … , 𝐿(2𝑛−2)(𝐼)} = ℤ2𝑛\{0}, 

and  
 

{𝑓(𝐿(𝐼))(𝐶), 𝑓(𝐿(2)(𝐼))(𝐶), … , 𝑓(𝐿(2𝑛−2)(𝐼))(𝐶)} = ℤ2𝑛\{𝐶}, 

 

So, the period of  {𝑠𝑖}𝑖≥0 is 2𝑛 − 1. Although, we could not 

prove a least period for {𝑠𝑖,𝑗}
𝑖≥0

 for a fixed 0 ≤ 𝑗 < 𝑛, but, 

intuitively and experimentally, it can be seen that the period 

of the mentioned bit-slices of the output of Algorithm 1 is 

high. On the other hand, knowing the output of Algorithm 

1, there is no simple way to acquire the previous state of 

the proposed generator. Compare this, to the case of LFSRs 

or T-functions; in both cases, there are efficient algorithms 

to obtain the previous state of the generator. Note that in 

Algorithm 1, we have chosen the T-function presented in 

Lemma 3 and put  𝐶 = 0. 
 

V. CONCLUSION 

    In this paper, firstly we investigate polynomials over ℤ2𝑛 

mathematically and based upon this study, we present the 

explicit formula for the inverse of RC6-like quadratic 

polynomials over ℤ2𝑛. Also, we propose some degree-one 

along with some self-invertible quadratic polynomials with 

better cryptographic properties for the use as a replacement 

of them in modern symmetric ciphers targeting        

software-oriented applications. Then, we provide a new 

nonlinear generator with provable least period for usage in 

stream ciphers or pseudo-random number generators. 
 

We believe that the proposed components of this paper 

could be used in designing software-oriented symmetric 

ciphers. The use of these components in block ciphers, 

stream ciphers, hash functions, pseudo-random number 

generators and authenticated encryption schemes could be 

a good line of research in continuation of the studies of this 

paper. 
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