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Abstract—We present an overview of recent advances in the
area of information security using algebraic number fields.
This overview indicates the importance of modular lattices
in information security and in recently proposed methods
for obtaining modular lattices using algebraic number fields.
Obtaining Construction A unimodular lattices using cyclotomic
number fields of prime orders have been addressed in the
literature. Recently, a new lattice invariant called secrecy gain
has been defined and it has been shown that it characterizes
the confusion at the eavesdropper when using lattices in the
Gaussian wiretap channels. There is a symmetry point, called
weak secrecy gain, in the secrecy function of modular lattices.
It is conjectured that the weak secrecy gain is the secrecy gain.
It is known that d-modular lattices with high level d are more
likely to have a large length for the shortest nonzero vector,
which results in a higher weak secrecy gain. In search of such
lattices, we prove that there is no modular lattices built using
Construction A over cyclotomic fields of prime power order
pn, with n > 1. We also present a new framework based on
Construction A lattices and cyclotomic number fields that gives
a family of p-modular lattices with p ≡ 1 (mod 4).

Index Terms—Secrecy gain, modular lattices, cyclotomic
fields.

I. INTRODUCTION

In recent years, algebraic techniques have been applied to
resolve security issues arising in communication networks
including confidentiality, integrity and authentication. Con-
ventional techniques for achieving confidentiality in com-
munication networks are based on cryptographic encryption
[1]. Encryption includes two principal types of algorithms:
secret-key encryption algorithms and public-key encryption
algorithms. As compared to public-key algorithms, secret-
key algorithms are computationally efficient, and result in
higher data throughput, while presenting challenges for key
management, such as secure key storage and distribution [1],
[2]. Public-key algorithms are simple in terms of key man-
agement, but require considerable computational resources
[1], [3]. Hence, hybrid cryptosystems [4] are employed in
practice in which a secret key is distributed by public-
key algorithms, and encryption and decryption use secret-
key algorithms. However, besides high computational cost,
public-key algorithms are not provably perfectly secure and
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are vulnerable to the so-called man-in-the-middle attack [3].
Moreover, using public-key algorithms to distribute secret
keys adds another layer of complexity in the design of
networks.

In addition to these general considerations, providing
secure communication over wireless networks using cryp-
tographic approaches presents further significant challenges
due to the following issues. First, the open nature of the
wireless medium allows eavesdroppers and attackers to in-
tercept information transmission or to degrade transmission
quality. Second, the lack of infrastructure in decentralized
networks makes key distribution difficult. Finally, the dy-
namic topology of mobile networks makes key management
expensive. The information theoretic approach to achieve
secure communication opens a promising new direction
towards solving wireless networking security problems. Such
an approach was initiated by Wyner [5] and by Csiszár and
Körner [6].

In his seminal work, Wyner introduced the wiretap chan-
nel [5], a discrete memoryless channel where the sender
Alice transmits confidential messages to a legitimate receiver
Bob, in the presence of an eavesdropper Eve, who has only
partial access to what Bob sees. Indeed, Eve’s access is
modeled as a separate channel with quality lower than the
quality of the channel between Alice and Bob. Both reliable
and confidential communication between Alice and Bob is
shown to be achievable at the same time, by exploiting the
physical difference between the channel to Bob and that to
Eve, without the use of cryptographic means. Since then,
many results of information theoretical nature have been
found for various classes of wiretap channels ranging from
Gaussian point-to-point channels to relay networks. These
results capture the trade-off between reliability and secrecy
while aim to determine the highest information rate that can
be achieved with weak and also strong secrecy, the so-called
secrecy capacity [1], [7].

In this paper, we consider the application of algebraic
number theory in code design of Gaussian wiretap channels.
The secrecy capacity of these channels was established
in [8]. Examples of existing Gaussian wiretap codes were
designed for binary inputs in [9]. A different approach was
adopted in [10], where lattice codes were proposed using
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as design criterion a new lattice invariant called secrecy
gain defined as the maximum of its secrecy function. It
was shown that secrecy gain characterizes the confusion at
the eavesdropper. A recent study [11] generalized the result
concerning semantic security of [12] to continuous channels.
They also propose another new lattice design criterion called
the flatness factor. They showed that a vanishing flatness fac-
tor (or equivalently an infinitely large secrecy gain) implies
semantic security. This suggests the study of the secrecy
gain of lattices as a way to understand how to design good
Gaussian lattice wiretap codes.

Belfiore and Solé [13] discovered a symmetry point, called
weak secrecy gain, in the secrecy function of unimodular
lattices (generalized to all d-modular lattices in [14]). They
conjectured that the weak secrecy gain is actually the secrecy
gain. Ernvall-Hytönen [15] developed a method to prove
or disprove the conjecture for unimodular lattices. Secrecy
gains of a special class of unimodular lattices called extremal
unimodular lattices and all unimodular lattices in dimensions
up to 23 have been computed [14], [16]. The asymptotic
behavior of the average weak secrecy gain as a function
of the dimension n was investigated and an achievable
lower bound on the secrecy gain of even unimodular lattices
was given [14]. Numerical upper bounds on the secrecy
gains of unimodular lattices in general, and unimodular
lattices constructed from self-dual binary codes in particular,
were given and compared to the achievable lower bound
[17]. A set of infinitely many unimodular lattices satisfying
the conjecture is illustrated in [18]. The proof of [15] is
shortened in [19] and the conjecture is verified for more
unimodular lattices. The authors of [20] discovered a 4-
modular lattice that fails to satisfy the conjecture. The weak
secrecy gain of 2- and 3-modular lattices is studied in [21]
and [7]; it is shown that most of the known even 2- and 3-
modular lattices in dimensions up to 24 have secrecy gains
bigger than the best unimodular lattices.

A special family of lattices is the ones constructed from
linear codes; this method of constructing lattices is usually
referred to as Construction A [22]. Recent applications of
Construction A lattices in communication and cryptography
can be found in [23]–[27]. The original binary Construction
A, due to Forney [28], can be seen as a particular case
of the cyclotomic field approach proposed by Ebeling [29].
The generalization from cyclotomic fields to either complex
multiplication fields (CM fields) or totally real number fields
was suggested in [30]. The main interest in constructing
lattices from linear codes is to take advantage of the code
properties to obtain lattices with nice properties; modularity
and large shortest vector (or minimal norm) are two of them.
Construction and secrecy gain analysis of d-modular lattices
from totally real and totally imaginary quadratic extensions,
for d = 1, 3, 5, 6, 7, 11, 14, 15, 23, have been considered
[31].

The main conclusion about the connection between the
weak secrecy gain of the lattice and other lattice parameters
has been reported in [31] after studying many examples. This
conclusion is summarized as follows [31, Remark 4.12]:

1) When the dimension increases, the weak secrecy gain
tends to increase, which has been proven for unimod-
ular lattices [16].

2) Fixing dimension and level d, a large length for the
shortest nonzero vector is more likely to induce a large
weak secrecy gain.

3) Fixing dimension, level d and the length of the shortest
nonzero vector, a smaller kissing number gives a larger
weak secrecy gain. It was shown for unimodular lattices
[16] that when the dimension n is fixed, n ≤ 23,
the secrecy gain is totally determined by the kissing
number, and the lattice with the best secrecy gain is
the one with the smallest kissing number.

4) Fixing dimension, the length of the shortest nonzero
vector, kissing number, a smaller level d gives a bigger
weak secrecy gain. However, the lattices with high level
d are more likely to have a large length for the shortest
nonzero vector.

The rest of this paper is organized as follows. In Section II,
we provide preliminaries about lattices and algebraic number
theory. Section III provides some results about cyclotomic
number fields. In Section IV, we introduce Construction A
lattices obtained from number fields. Section V provides our
main results about the existence of modular lattices in the
family of Construction A lattices obtained from cyclotomic
number fields. Section VI, provides a new framework based
on Construction A and cyclotomic number fields that gives
a family of p-modular lattices. Section VII contains the
concluding remarks.

II. PRELIMINARIES

A. Algebraic Number Theory

Let K and L be two fields. If K ⊂ L, then L is a field
extension of K denoted by L/K. The dimension of L as
vector space over K is the degree of L over K, denoted by
[L : K]. Any finite extension of Q is a number field. An
element α ∈ K is an algebraic integer if it is a root of a
monic polynomial with coefficients in Z. The set of algebraic
integers of K is the ring of integers of K, denoted by OK .
If K is a number field, then K = Q(θ) for an algebraic
integer θ ∈ OK [32]. For a number field K of degree n, the
ring of integers OK forms a free Z-module of rank n. Every
basis {ω1, . . . , ωn} of the Z-module OK is an integral basis
of K.

An automorphism of L/K fixes K. In other words, an
automorphism of L/K is an isomorphism τ from L to
L such that τ(x) = x for each x in K. The set of all
automorphisms of L/K forms a group with the operation of
function composition. This group is sometimes denoted by
Aut(L/K). If L/K is a Galois extension, then Aut(L/K))
is the Galois group of (the extension) L over K, and is
usually denoted by Gal(L/K).

Let K = Q(θ) be a number field of degree n over Q.
There are exactly n embeddings σ1, . . . , σn of K into C
defined by σi(θ) = θi, for i = 1, . . . , n, where the θi’s are
the distinct zeros in C of the minimal polynomial of θ over
Q [32]. Let r1 be the number of embeddings with image in
R and 2r2 the number of embeddings with image in C so
that r1 + 2r2 = n. The pair (r1, r2) is the signature of K.
If r2 = 0 we have a totally real algebraic number field. In
this paper we focus on the case when K is totally real.

For a number field K of degree n and x ∈ K, the elements
σ1(x), . . . , σn(x) are the conjugates of x. The norm and the
trace of x are



NK/Q(x) =

n∏
i=1

σi(x), TrK/Q(x) =

n∑
i=1

σi(x). (1)

Let {ω1, . . . , ωn} be an integral basis of K. The discrim-
inant of K is defined as dK = det(A)2, where A is the
matrix Ai,j = σj(ωi), for i, j = 1, . . . , n. The discriminant
of a number field belongs to Z and it is independent of the
choice of a basis.

Definition 1: Let us order the σi’s so that, for all x ∈
K, σi(x) ∈ R, 1 ≤ i ≤ r1, and σj+r2(x) is the complex
conjugate of σj(x) for r1 + 1 ≤ j ≤ r1 + r2. The canonical
embedding (Minkowski embedding) σ : K → Rr1 × Cr2 is
the homomorphism defined by

σ(x) = (σ1(x), . . . , σr1(x), σr1+1(x), . . . , σr1+r2(x)). (2)

If we identify Rr1 ×Cr2 with Rn, the canonical embedding
can be rewritten as σ : K → Rn

σ(x) = (σ1(x), . . . , σr1(x),<σr1+1(x),=σr1+1(x),

. . . ,<σr1+r2(x),=σr1+r2(x)), (3)

where <σj denotes the real part of σj and =σj the imaginary
part of σj , for j = r1 + 1, . . . , r1 + r2.

Let A be a Dedekind ring (for example the ring of
algebraic integers in a number field), K its quotient field, L
a finite separable extension of K, and B the integral closure
of A in L [33]. If p is a prime ideal of A, then pB is an
ideal of B with factorization pB = Pe1

1 · · ·Per
r , into primes

of B, where ei ≥ 1. Each ei is the ramification index of Pi

over p; it is also written as e(Pi/p). If P lies above p in B,
we denote by f(P/p) the degree of the residue class field
extension B/P over A/p; this is the residue class degree or
inertia degree.

Theorem 1: [33, p. 24] Let A be a Dedekind ring, K its
quotient field, L a finite separable extension of K, and B
the integral closure of A in L. Let p be a prime of A. Then

[L : K] =
∑
P|p

e(P/p)f(P/p). (4)

When L/K is a Galois extension of degree n, this
simplifies to n = efg, where g is the number primes of
B above p. In other words, e(P/p) = e and f(P/p) = f
for all P|p. If [L : K] = e(P/p), P is totally ramified above
p. In that case, the residue class degree is equal to 1. Since
P is the only prime of B lying above p, L is totally ramified
over K.
B. Lattices

A discrete, additive, subgroup Λ of the m-dimensional
real space Rm is a lattice [34]. Every lattice Λ has a basis
B = {b1, . . . ,bn} ⊆ Rm where every x ∈ Λ can be
represented as an integer linear combination of vectors in
B. The matrix M with b1, . . . ,bn as its rows is a generator
matrix for the lattice. The matrix G = MMt is called
a Gram matrix for the lattice. A lattice Λ in Rm is an
integral lattice if its Gram matrix has coefficients in Z.
The determinant of the lattice det(Λ) is defined to be the
determinant of the matrix G and the volume of the lattice
is defined as vol(Λ) =

√
det(G).

Now we present definitions in algebraic lattice theory
equivalent to the above definitions.

Definition 2: An integral lattice Γ is a free Z-module
of finite rank together with a positive definite symmetric
bilinear form 〈, 〉 : Γ× Γ→ Z.

Definition 3: The discriminant of a lattice Γ, denoted
disc(Γ), is the determinant of MMt where M is a generator
matrix for Γ. The volume vol(Rn/Γ) of a lattice Γ is defined
as |det(M)|. The discriminant is related to the volume of a
lattice by

vol(Rn/Γ) =
√

disc(Γ). (5)

Theorem 2: [32, p. 155] Let K be a number field and
{ω1, . . . , ωn} be an integral basis of OK . The n vectors
vi = σ(ωi) ∈ Rn, i = 1, . . . , n are linearly independent, so
they define a full rank lattice Λ = Λ(OK) = σ(OK).

Theorem 3: [35] Let dK be the discriminant of a number
field K. The volume of the fundamental parallelotope of
Λ(OK) is given by

vol(Λ(OK)) = 2−r2
√
|dK |. (6)

III. CYCLOTOMIC FIELDS

Definition 4: Let K be a number field of degree n and OK
its ring of integers. Then, considering OK as a Z-module,
if it has a basis of the form

{
1, α, . . . , αn−1

}
for some α ∈

OK , α is a power generator, this basis is a power basis and
K is monogenic.

The most important cases among monogenic number
fields are cyclotomic number fields. For any field K, an
extension of the form K(ζ), where ζ is a root of unity, is a
cyclotomic extension of K. When there are n different nth

roots of unity, we denote their group by µn. An nth root
of unity that has order n is a primitive nth root of unity,
denoted by ζn.

Lemma 1: [36, Lemma 2.1] For σ ∈ Gal(K(ζn)/K) there
is an integer aσ that is relatively prime to n such that σ(ω) =
ωaσ for all ω ∈ µn.
Based on Lemma 1, for any field K, the mapping τ :
Gal(K(ζn)/K) → (Z/nZ)× = {1 ≤ m ≤ n|(m,n) = 1},
that sends σ to aσ , is an injective group homomorphism.
When K = Q, this embedding is an isomorphism. For
n > 2, K = Q(ζn) is totally imaginary and by using the
previous result, we can determine φ(n)/2 pairs of embed-
dings from K into C, where φ(·) is Euler’s φ-function. It
should be noted that (Z/nZ)× is Abelian but not necessarily
cyclic. For example, (Z/8Z)× is not cyclic. It is proved in
[37, Theorem 2.6] that Z[ζn] is the ring of algebraic integers
of Q(ζn), i.e., Q(ζn) is a monogenic number field. Using
the following theorem, we can compute the discriminant of
Q(ζn).

Theorem 2: [37, Proposition 2.7] Let K = Q(ζn), then

dK = (−1)φ(n)/2
nφ(n)∏

p|n p
φ(n)/(p−1) . (7)

When n = pk, for p a prime number, the discriminant of
K = Q(ζpk) is

dK = ±pp
k−1(pk−k−1), (8)

where we have a negative sign if pk = 4 or if p ≡ 3 (mod 4)
and we have a positive sign otherwise [37, Proposition 2.1].
The expression of the discriminant of the cyclotomic number



field Q(ζ2r ), where r > 2, is given by dQ(ζ2r ) = 22
r−1(r−1)

and for r = 2, the discriminant is equal to −4 [38].
There are differences between the prime-power case and

the case of general n. For example, if n has at least two
distinct prime factors. Then 1 − ζn is a unit of Z[ζn] and
(1− ζn)−1 =

∏
1 < j < n
(j, n) = 1

(1− ζjn) [37, Proposition 2.8]. If

n is prime, 1− ζn is not unit and P = (1− ζn) is a prime
ideal of OK = Z[ζn]; in this case, n is totally ramified in
Q(ζn), because nOK = Pn−1 [37, Lemma 1.4].

In addition to cyclotomic fields, we discuss subfields of
Q(ζn). The most important subfield for our purposes is the
maximal real subfield Q(ζn + ζ−1n ) denoted Q(ζn)+. The
extension Q(ζn)/Q(ζn)+ is of degree 2, because ζn is a
root of X2 − (ζn + ζ−1n ) + 1. Thus, Q(ζn) is a CM field,
that is, a totally imaginary quadratic extension of a totally
real number field. Due to the following theorem, Q(ζn)+ is
also monogenic.

Theorem 3: [37, Proposition 2.16] Z[ζn+ ζ−1n ] is the ring
of integers of Q(ζn)+.
If n = pr, the degree of K = Q(ζpr ) over Q is pr−1(p− 1)

and the prime p totally ramifies in K as pOK = Ppr−1(p−1),
where P is a prime principal ideal with generator 1 − ζpr
and residue field OK/P ∼= Fp. The degree of K+ =

Q(ζpr + ζ−1pr ) over Q is pr−1(p−1)
2 . It can be proved that the

prime p also totally ramifies in K+ as pOK+ = p
pr−1(p−1)

2 ,
with p = P ∩ OK+ = (2− ζpr − ζ−1pr )OK+ [30]. By using
the Hasse Theorem that states the conductor-discriminant
relation, a formula has been obtained to compute the dis-
criminant of any subfield of Q(ζpr ) where p is an odd
prime and r is a positive integer [39]. Let p be an odd
prime number, r a positive integer, and L = Q(ζpr ). Since
L is a Galois extension of Q and its Galois group is a
cyclic group isomorphic to (Z/prZ)×, there is a one-to-one
correspondence between the subfields of L and the divisors
of [L : Q] = (p− 1)pr−1. The discriminant of any subfield
K of L can be obtained as a function of p and its degree
only. Since the degree of K is a divisor of (p− 1)pr−1, we
write [K : Q] = upj , where u is a divisor of p − 1 and
j ≤ r − 1.

Theorem 4: [39, Theorem 4.1] Let K be a subfield of
Q(ζpr ) with [K : Q] = upj , where p - u. Then, dK =

p
u
[
(j+2)pj− p

j+1−1
p−1

]
−1.

IV. CONSTRUCTION OF LATTICES FROM CODES

There exist many ways to construct lattices based on codes
[22]. Here we mention a lattice construction from totally
real and complex multiplication (CM) fields [30], which
naturally generalizes Construction A of lattices from p-ary
codes obtained from the cyclotomic field Q(ζp) [29], p a
prime. Let K be a Galois number field of degree n which
is either totally real or a CM field. Let OK be the ring
of integers of K and p be a prime ideal of OK above the
prime p. We have OK/p ∼= Fpf , where f is the inertia
degree of p. Define ρ to be the map of reduction modulo p
componentwise as follows

ρ : ONK → FNpf ,
(x1, . . . , xN ) 7→ (x1 mod p, . . . , xN mod p)

(9)

for some positive integer N . Let C ⊂ FNpf be a linear code
over Fpf , that is a k-dimensional subspace of FNpf . As ρ is a

Z-module homomorphism, ρ−1(C) is a submodule of ONK .
Since OK is a free Z-module of rank n, ρ−1(C) is a free
Z-module of rank nN . Let bα : ONK × ONK → R be the
symmetric bilinear form defined by

bα(x,y) =

N∑
i=1

TrK/Q(αxiyi), (10)

where α ∈ K ∩ R, TrK/Q is the trace function in (1), yi
denotes the complex conjugate of yi if K is a CM field,
and yi = yi if K is totally real. If α is furthermore totally
positive, i.e., σi(α) > 0, for σ1 (the identity), σ2, . . . , σn
all elements of the Galois group of K over Q, then bα is
positive definite, i.e., bα(x,x) > 0 for all nonzero x ∈ ONK
[31]. If we take α in the codifferent of K which is the
set D−1K = {x ∈ K : Tr(xy) ∈ Z for all y ∈ OK}, then
Tr(αxiyi) ∈ Z [31]. The pair (ρ−1(C), bα) thus forms a
lattice of rank nN , which is integral when α ∈ D−1K but
also in other cases, depending on the choice of C, as we will
see in the following. It should be noted that ρ−1(C) ⊂ ONK
and by using the canonical embedding (See Definition 1) σ
we can map x ∈ K into σ(x) ∈ Rn, where n = [K : Q].
Let σN be the componentwise extension of σ, that is

σN : KN → RnN ,
(x1, . . . , xN ) 7→ (σ(x1), . . . , σ(xN )).

(11)

Thus, σN (ρ−1(C)) ⊂ RnN is a real lattice of dimension
nN . This method of constructing lattices from linear codes
is usually referred to as Construction A [22], [30], [31]. To
simplify the notation, we show above Construction A lattices
using (ρ−1(C), bα) without mentioning the operation of σN .
The original binary Construction A, proposed by Forney
[28], can be seen as a particular case of the cyclotomic
field approach proposed by Ebeling [29], which in turn is a
particular case of the above construction. For p a prime, take
for K the cyclotomic field Q(ζp), where ζp is a primitive
pth root of unity and OK = Z[ζp]. Take p = (1 − ζp) the
prime ideal above p, and α = 1/p. Since OK/p ∼= Fp,
this construction involves linear codes over Fp. The case
p = 2 is the binary Construction A. The generalization from
cyclotomic fields to either CM fields or totally real number
fields is suggested in [30] for the case where p is totally
ramified.

Definition 5: Given an arbitrary lattice (L, b) where L is
a Z-module and b is a symmetric bilinear form which is
positive definite, the dual lattice of (L, b) is the pair (L∗, b),
where

L∗ = {x ∈ L⊗Z R | b(x,y) ∈ Z for ally ∈ L} , (12)

in which ⊗Z denotes the tensor product over Z. If L ⊂ L∗,
(L, b) is integral. If (L, b) ∼= (L∗, b), i.e., there exists
a Z-module homomorphism τ : L → L∗ such that
b(τ(x), τ(y)) = b(x,y) for all x,y ∈ L, then (L, b) is
unimodular. If (L, b) is integral and (L, b) ∼= (L∗, db) for
some positive integer d, (L, b) is d-modular (or modular
of level d). An integral lattice (Λ, b) is called even if
b(x,x) ∈ 2Z for all x ∈ Λ and odd otherwise.

Let C ⊂ FNq be a linear code of dimension
k, and q a prime power. Its dual code is C⊥ ={
x ∈ FNq |x · y =

∑N
i=1 xiyi = 0 for all y ∈ C

}
; C is self-

orthogonal if C ⊂ C⊥, and is self-dual if C = C⊥. It is well



known for the binary Construction A that C ⊂ FN2 is self-
dual if and only if (ρ−1(C), b 1

2
) is unimodular [22], [29].

More generally, for K = Q(ζp), if C ⊂ FNp is self-dual,
then (ρ−1(C), b 1

p
) is unimodular [29]. The converse of this

statement is proved in [31] for totally real number fields
and CM fields with a totally ramified prime. Self-dual codes
thus provide a systematic way to obtain modular lattices.
This was used for example in [40], where K = Q(

√
−2),

p = (3) and self-dual codes over the ring OK/p were used to
construct 2-modular lattices. Similarly, in [41], it was shown
that by taking K = Q(ζ3), p = (4), and self-dual codes over
the ring OK/p, 3-modular lattices can be constructed.

As above, we consider the nN -dimensional lattice
(ρ−1(C), bα). Let ∆ = |dK | be the absolute value of the
discriminant of K.

Proposition 1: [31] Using the previous notation, the
following results hold:

1) The lattice (ρ−1(C), bα) has discriminant
∆Np2f(N−k)N(α)N and volume ∆

N
2 pf(N−k)N(α)

N
2 .

2) The dual lattice (ρ−1(C)∗, bα) has discrim-
inant ∆−Np−2f(N−k)N(α)−N and volume
∆

−N
2 p−f(N−k)N(α)

−N
2 .

3) The lattice (ρ−1(C⊥), bα) has discriminant
∆Np2fkN(α)N and volume ∆

N
2 pfkN(α)

N
2 .

Two particular cases of the above construction method,
when α = 1/p or α = 1/2p for K a real quadratic field
with p inert and K an imaginary quadratic field with p
totally ramified, have been discussed in [31]. The following
proposition justifies why we consider self-orthogonal codes
in the construction of modular lattices which are of great
interest in information security.

Proposition 2: [31, Proposition 2.9] If C is not self-
orthogonal, i.e. if C 6⊂ C⊥, then (ρ−1(C), bα) is not an
integral lattice for any α ∈ p−1 ∩Q when K is totally real
or when K is a CM field and p is totally ramified.

V. CONSTRUCTION A MODULAR LATTICES USING
CYCLOTOMIC FIELDS

In this section, we present the construction of modular
lattices using the provided algebraic tools in the previous
sections. We consider K = Q(ζn) and its maximal totally
real subfield K+, when n is a prime power. In other cases,
that is when K = Q(ζn) and n 6= pr for an odd prime
number p, making a general decision is not easy. Due to the
lack of space, we can not provide more details. Here, we
concentrate on generalizing the following results to obtain
d-modular lattices using cyclotomic number fields.

Proposition 3: [29, Section 5.2] Let p be an odd prime,
and let ζp be a primitive pth root of unity. Consider the
cyclotomic field K = Q(ζp), which is a CM field, with
the ring of integers OK = Z[ζp]. The degree of K over
Q is p − 1. Take the prime ideal p = (1 − ζp) with the
residue field OK/p ∼= Fp, and the bilinear form b1/p(x,y) =∑N
i=1 TrK/Q(xiȳi/p). Given a code C over Fp, if C ⊂ C⊥

then (ρ−1(C), b1/p) is an even integral lattice of rank N(p−
1). In addition, if C is self-dual, then (ρ−1(C), b1/p) is an
even unimodular lattice.

Proposition 4: [30, Corollary 2] Let K+ = Q(ζp + ζ−1p )
and let C ⊂ FNp be a k-dimensional code such that

C ⊂ C⊥. Then the lattice (ρ−1(C), bα) given in the pre-
vious section, together with the bilinear form bα(x,y) =∑N
i=1 TrK+/Q(αxiyi), where α = 1/p, is an integral lattice

of rank N(p − 1)/2. In addition, if C is self-dual, then
(ρ−1(C), bα) is an odd unimodular lattice.
As far as we know, the generalizations of the above results
to K = Q(ζpr ) and K+ = Q(ζpr + ζ−1pr ), with r > 1, or
generalization to the cases that K = Q(ζn), with n 6= pr for
a prime number p, have not been addressed in the literature.
In the following theorems, we consider all of these cases.

Theorem 5: Let K = Q(ζpr ), with r > 1 and p an
odd prime number, be the cyclotomic field with the ring
of integers OK = Z[ζpr ]. We have that K is a CM field and
the prime p totally ramifies in K as pOK = Ppr−1(p−1),
with residue field OK/P ∼= Fp, where P = (1 − ζpr ).
Let C ⊂ FNp be an (N, k) self-dual code over Fp. Then,
(ρ−1(C), b1/p) with b1/p(x,y) =

∑N
i=1 TrK/Q(xiȳi/p), is

d-modular if and only if d = 1 and r = 1.
Proof: If r = 1 and d = 1, then K = Q(ζp)

and the result follows from Proposition 3. Now as-
sume that (ρ−1(C), b1/p) is a d-modular lattice. Then,
due to the definition of modular lattices, we have
1√
d
ρ−1(C) = (ρ−1(C))∗. Consequently, vol

(
1√
d
ρ−1(C)

)
=

vol((ρ−1(C))∗). We have vol((ρ−1(C))∗) = 1/vol(ρ−1(C))
that implies d

−nN
2 (vol(ρ−1(C)))2 = 1. It is enough to

compute vol(ρ−1(C)). To this end, we have vol(ρ−1(C)) =√
|disc(ρ−1(C))| =

√
∆Np2N−2k−nN , where ∆ = |dK | =

pp
r−1(pr−r−1). Thus, we have

d
−nN

2 p2N−2k−nNpNp
r−1(pr−r−1) = 1. (13)

We conclude that d is 1 or p. Let d = p and apply n =
pr−1(p− 1) in (13). We have

−pr−1(p− 1)N

2
+2N−2k−pr−1(p−1)N+Npr−1(pr−r−1)

= 0.

Simplifying the above equation gives the following relation

N
[
3(1− p)pr−1 + 2pr−1(pr − r − 1) + 4

]
= 4k.

Since C is a self-dual code, k = N/2 and we have

2 = 3(1− p)pr−1 + 2pr−1(pr − r − 1) + 4

= pr−1(1− 3p+ 2pr − 2r) + 4.

Finally, we have pr−1(1−3p+2pr−2r) = −2 which implies
r = 2 and p = 2 or r = 1 and p = 1 and both of these cases
are contradictions. Thus, d = 1 and it is enough to show
that r = 1. In this case, ρ−1(C) is unimodular and we have
ρ−1(C⊥) = (ρ−1(C))∗ and consequently vol(ρ−1(C⊥)) =
vol((ρ−1(C))∗), which implies

k − N

2

[
pr−1(rp− r − p) + 2

]
= k +

N

2

[
pr−1(rp− r − p)

]
.

We conclude that pr−1(rp− r− p) = −1 which is possible
if and only if r = 1.

Theorem 6: Let K+ = Q(ζpr +ζ−1pr ), with r > 1 and p an
odd prime number, be the totally real maximal subfield of a
cyclotomic field with the ring of integers OK+ = Z[ζpr +
ζ−1pr ]. We have that K+ is a totally real number field and

the prime p totally ramifies in K+ as pOK+ = p
pr−1(p−1)

2 ,
with residue field OK+/p ∼= Fp, where p = (2−ζpr −ζ−1pr ).
Let C ⊂ FNp be an (N, k) self-dual code over Fp. Then,



(ρ−1(C), b1/p) with b1/p(x,y) =
∑N
i=1 TrK/Q(xiyi/p), is

d-modular if and only if d = 1 and r = 1.
Proof: If r = 1 and d = 1, then K+ =

Q(ζp + ζ−1p ) and the result follows from Proposition 4.
Now, assume that (ρ−1(C), b1/p) is a d-modular lattice.
Then, due to the definition of modular lattices, we have
1√
d
ρ−1(C) = (ρ−1(C))∗. Consequently, vol

(
1√
d
ρ−1(C)

)
=

vol((ρ−1(C))∗). We have vol((ρ−1(C))∗) = 1/vol(ρ−1(C))
that implies d

−nN
2 (vol(ρ−1(C)))2 = 1. It is enough

to compute vol(ρ−1(C)). Similarly as before, we have
vol(ρ−1(C)) =

√
|disc(ρ−1(C))| =

√
∆Np2N−2k−nN ,

where ∆ = |dK+ | = p
p−1
2

(
(r+1)pr−1− p

r−1
p−1

)
−1. Thus, we

have

d
−nN

2 p2N−2k−nNp
N
[
p−1
2

(
(r+1)pr−1− p

r−1
p−1

)
−1
]

= 1. (14)

We conclude that d is 1 or p. Let d = p, and apply n =
pr−1(p−1)

2 in (14). We have

pr−1(1− p)N
4

+N+

pr−1(1− p)N +N(p− 1)
(

(r + 1)pr−1 − pr−1
p−1

)
2

= 2k.

Since C is a self-dual code, k = N/2 and we have

0 =
N(p− 1)

4

[
−3pr−1 + 2(r + 1)pr−1 − 2(pr − 1)

p− 1

]
=
N

4

[
−3(p− 1)pr−1 + 2(r + 1)(p− 1)pr−1 − 2(pr − 1)

]
=
N

4

[
pr(2r − 3) + pr−1(1− 2r) + 2

]
=
N

4

[
pr−1(2pr − 3p+ 1− 2r) + 2

]
.

Thus, we have pr−1(1−3p+2pr−2r) = −2 which implies
r = 2 and p = 2 or r = 1 and p = 1 and both of these cases
are contradictions. Thus, d = 1 and it is enough to show
that r = 1. In this case, ρ−1(C) is unimodular and we have
ρ−1(C⊥) = (ρ−1(C))∗ and consequently vol(ρ−1(C⊥)) =
vol((ρ−1(C))∗), which implies

k +
N

4

[
pr−1(rp− r − p)− 1

]
=

k − N

4

[
pr−1(rp− r − p) + 3

]
.

We conclude that pr−1(rp− r− p) = −1 which is possible
if and only if r = 1.

VI. A NEW FAMILY OF p-MODULAR CONSTRUCTION A
LATTICES BASED ON CYCLOTOMIC FIELDS

In the applications of d-modular lattices in information se-
curity, only special values of d are accepted, more precisely,
d = 1, 2, 3, 5, 6, 7, 11, 14, 15 and 23 [31]. We could not find
any modular lattice in our trials using cyclotomic number
fields (with non-prime orders) and Construction A that fulfil
these conditions. Thus, these remain open problems.

In the sequel, we present a new framework based on
Construction A and cyclotomic number fields giving us a
family of p-modular lattices, with p ≡ 1 (mod 4).

According to Kronecker-Weber theorem [42], [43], every
algebraic integer in a number field, whose Galois group is
Abelian, can be expressed as a sum of roots of unity with
rational coefficients. Let Qm = Q(e2πi/m). We can assume

that m 6≡ 2 (mod 4), because if m ≡ 2 (mod 4) with m =
2m0, then it is easy to check that e−2πi/m0 is a primitive
mth root of unity, and hence Qm = Qm0 .

Example 6.1: [44] Let L = Q(ζm + ζ−1m ) be the maximal
real subfield of Qm. The conductor of a number field L is
the smallest integer m such that L ⊂ Qm which is denoted
by fL. For m ≥ 5, fL = m. If m = 3, 4, then L = Q and
fL = 1. As another case, consider L = Q(

√
d), where d is

an squarefree integer, |d| > 1. Then

fL = |dL| =
{
|d|, if d ≡ 1 (mod4),
|4d|, if d ≡ 2, 3 (mod4).

(15)

If L = Qp (p an odd prime), then by using (8), dL =

(−1)
p−1
2 pp−2 is the square of an integer in OL, thus

Q
(√

(−1)
p−1
2 p

)
⊂ Qp. It follows that for a prime p

Q(
√
p) ⊂

 Qp, if p ≡ 1 (mod4),
Q4p, if p ≡ 3 (mod4),
Q8, if p = 2.

(16)

Moreover, if d = ±2νp1p2 · · · pr is squarefree, then
Q(
√
d) ⊂ Q4d. �

Theorem 7: Let K = Q(ζp), where p is an odd prime
and p ≡ 1 (mod 4), with the ring of integers OK = Z[ζp].
Then, K is a CM field and the prime p totally ramifies
in K as pOK = Pp−1, with residue field OK/P ∼= Fp,
where P = pOK + (1− ζp)OK . Let C ⊂ FNp be an (N, k)
self-dual code over Fp. Then, (ρ−1(C), bα) with bα(x,y) =∑N
i=1 TrK/Q(αxiȳi) and α = 1√

p , is a p-modular lattice.
Proof: The proof is omitted due to lack of space.

Remark 1: For K = Q(ζp), the p − 1 embeddings
σ1, . . . , σp−1 : K → C are given by

σr(ζp) = ζr, r = 1, . . . , p− 1. (17)

Then, the trace of an element γ ∈ K, γ = a0 +a1ζp+ · · ·+
ap−2ζ

p−2
p , ai ∈ Q, is easily computed to be [29, p. 122]

TrK/Q(γ) = (p− 1)a0 − a1 − a2 − · · · − ap−2. (18)

Let P = (1− ζp) be the principal ideal of OK = Z[ζp] gen-
erated by the element 1− ζp in OK . Then, P∩Z = pZ and
for any x ∈ P, TrK/Q(x) ∈ pZ [29, p. 122]. The mapping
ρ : OK → Fp sending γ = a0 + a1ζp + · · · + ap−2ζ

p−2
p ,

ai ∈ Z, to ρ(γ) = a0+a1+· · ·+ap−2 (mod p) is an additive
homomorphism and the kernel of this homomorphism is
equal to P. This shows that the mapping ρ can be considered
as the reduction mod P [29, p. 123]. The vectors

1− ζp, ζp − ζ2p , ζ2p − ζ3p , . . . , ζp−2 − ζp−1 (19)

form a Z-basis for P [29, p. 126].
Remark 2: In order to use Theorem 7, we need to express√
p in terms of the Z-basis of Z[ζp]. To this end, we use

quadratic Gauss sums. We also have the following useful
result [45, pp. 75]

p−1∑
n=0

e2πin
2/p =

{ √
p p ≡ 1 (mod 4),

i
√
p p ≡ 3 (mod 4).

(20)

The main reason for applying the canonical embedding on
algebraic lattices is the embedding of their corresponding
lattices into the real space Rn for some n. Theorem 7
does not guarantee that its introduced lattice is embedded



in RN(p−1), because the element α is not necessarily totally
positive and some of

√
σi(α)’s may be purely imaginary

numbers. In the next theorem, we explain this issue for
p = 5.

Proposition 5: Let p = 5 and ρ−1(C) be the ob-
tained lattice in Theorem 7. Define ΓC = σN (ρ−1(C)),
where σN is the canonical embedding which has been
applied componentwise over ONK , that is, σN (x1, . . . , xN ) =
(σ(x1), . . . , σ(xN )), for (x1, . . . , xN ) ∈ ONK and σ =
(σ1, . . . , σ4). Then, ΓC is a Z-lattice in R2N ×R∗2N , where
R∗ is the set of purely imaginary numbers.

Proof: The proof is omitted due to lack of space.
Using Theorem 7, we find a new family of 5-modular

lattices which is applicable in information security. We need
a family of self dual codes over F5, which is provided in
[46]. Self-dual codes over F5 exist if and only if the length
is even. If a codeword u in a self-orthogonal code C contains
i 0’s, j {±1}’s and k {±2}’s (so that the weight of u
is j + k), then u · u = 0 implies j ≡ k (mod 5). This
equation also implies that a codeword in a self-orthogonal
code cannot have weight 1 or 3, although all other weights
can occur [46]. The first obtained 5-ary self-dual code in
[46] is the [2, 1, 2] code C2, consisting of the codewords
{(0, 0), (1, 2), (2,−1), (−2, 1), (−1,−2)}. It has generator
matrix

[
1 2

]
.

Example 6.2: Let p = 5 and K = Q(ζ5), with ρ :
Z[ζ5]2 → F2

5 given in Remark 1. The degree of K/Q is
4, and the four embeddings of K are σ1, which is the
identity, σ2, which is the conjugate of σ1 and maps ζ5 to
ζ45 , σ3, which maps ζ5 to ζ25 , and σ4, which is the conjugate
of σ3 and maps ζ5 to ζ35 . Consider the self dual code
C = C2 of length 2 over F5 as in the above, with generator
matrix

[
I A (mod 5)

]
and A (mod 5) =

[
2
]
. Using

the mapping ρ in Remark 1, we can take 2 to be the
preimage of 2 and we have A =

[
2
]
. We next compute

a generator matrix for the lattice ρ−1(C) explicitly by
using the discussion from Section IV. We choose the basis
{v1 = 1, v2 = ζ5, v3 = ζ25 , v4 = ζ35} for OK , and it follows
that the generator matrix for the lattice OK together with
the trace form 〈x, y〉 = TrK/Q(xȳ), x, y ∈ OK , is

M =
√

2


<σ1(1) =σ2(1) <σ3(1) =σ4(1)
<σ1(ζ5) =σ2(ζ5) <σ3(ζ5) =σ4(ζ5)
<σ1(ζ25 ) =σ2(ζ25 ) <σ3(ζ25 ) =σ4(ζ25 )
<σ1(ζ35 ) =σ2(ζ35 ) <σ3(ζ35 ) =σ4(ζ35 )



=
√

2


1 0 1 0
<ζ5 =ζ45 <ζ25 =ζ35
<ζ25 =ζ35 <ζ45 =ζ5
<ζ35 =ζ25 <ζ5 =ζ45

 .
It should be noted that

<ζ5 = <ζ45 = cos( 2π
5 ) = −1+

√
5

4 ,

<ζ25 = <ζ35 = cos( 4π
5 ) = −1−

√
5

4 ,

=ζ5 = 1
4

√
10 + 2

√
5, =ζ45 = −1

4

√
10 + 2

√
5,

=ζ25 = 1
4

√
10− 2

√
5 =ζ35 = −1

4

√
10− 2

√
5.

Using Proposition 2.6 in [31], a generator matrix for
(ρ−1(C), bα), with α = 1/

√
5, is

MC =

[
M A⊗M
04×4 Mp

]
(I2 ⊗Dα) , (21)

where Mp is obtained using the Z-basis {ω1 = 1−ζ5, ω2 =
ζ5 − ζ25 , ω3 = ζ25 − ζ35 , ω4 = ζ35 − ζ45} for P as follows

Mp =
√

2


<σ1(ω1) =σ2(ω1) <σ3(ω1) =σ4(ω1)
<σ1(ω2) =σ2(ω2) <σ3(ω2) =σ4(ω2)
<σ1(ω3) =σ2(ω3) <σ3(ω3) =σ4(ω3)
<σ1(ω4) =σ2(ω4) <σ3(ω4) =σ4(ω4)

 .
The matrix Dα is the diagonal matrix
diag

(√
σ1(α),

√
σ2(α),

√
σ3(α),

√
σ4(α)

)
.

In order to show that (ρ−1(C), bα) is integral, we
compute the Gram matrix as follows [31]. Define v =
(v1, v2, v3, v4)t = (1, ζ5, ζ

2
5 , ζ

3
5 )t, v† =

(
1, ζ45 , ζ

3
5 , ζ

2
5

)
and

ω = (ω1, ω2, ω3, ω4)t = (1− ζ5)v, then

GC =

[
TrK/Q

(
5αvv†

)
TrK/Q

(
2αvω†

)
TrK/Q (2αω̄vt) TrK/Q

(
αωω†

) ] ,
in which

vv† =


1 ζ45 ζ35 ζ25
ζ5 1 ζ45 ζ35
ζ25 ζ5 1 ζ45
ζ35 ζ25 ζ5 1

 ,
vω† = v(1− ζ5)v† = (1− ζ45 )vv†, (22)

ω̄vt = (1− ζ5)v̄vt = (1− ζ45 )(vv†)t, (23)

ωω† = (1− ζ5)(1− ζ45 )(vv†) = (3 + ζ25 + ζ35 )vv†. (24)

Using the additive property of the trace function, it is enough
to find TrK/Q(

√
5ζi5), for i = 0, 1, . . . , 4. We have

TrK/Q(
√
5ζ05 ) = TrK/Q(−1− 2ζ25 − 2ζ35 ) = −4 + 2 + 2 = 0,

TrK/Q(
√
5ζ5) = TrK/Q(2 + ζ5 + 2ζ25 ) = 8− 1− 2 = 5,

TrK/Q(
√
5ζ25 ) = TrK/Q(2ζ5 + ζ25 + 2ζ35 ) = −2− 1− 2 = −5,

TrK/Q(
√
5ζ35 ) = TrK/Q(−2− 2ζ5 − ζ35 ) = −8 + 2 + 1 = −5,

TrK/Q(
√
5ζ45 ) = TrK/Q(1− ζ5 − ζ25 + ζ35 ) = 4 + 1 + 0 = 5.

For example, we have computed the upper left component
of GC in (26). Other components can be computed similarly
and we have

GC =



0 5 −5 −5 −2 4 0 −4
5 0 5 −5 2 −2 4 0
−5 5 0 5 −4 2 −2 4
−5 −5 5 0 0 −4 2 −2
−2 2 −4 0 −2 3 −2 −2

4 −2 2 −4 3 −2 3 −2
0 4 −2 2 −2 3 −2 3
−4 0 4 −2 −2 −2 3 −2


.

(25)
Thus, (ρ−1(C), bα) is an integral lattice and it can be checked
that det(GC) = 54, that is a necessary condition for being
5-modular. �

VII. CONCLUSIONS

In this paper, we have presented the importance of mod-
ular lattices in information security and recently proposed
methods for obtaining modular lattices using algebraic num-
ber fields. There is a symmetry point, called weak secrecy
gain, in the secrecy function of modular lattices conjectured
to be the secrecy gain. It characterizes the confusion at the
eavesdropper in the case of using lattices in the Gaussian
wiretap channels. In order to increase the weak secrecy
gain, we can use d-modular lattices with high level d since



TrK/Q
(
5αvv†

)
=


TrK/Q

(√
5
)

TrK/Q
(√

5ζ45
)

TrK/Q
(√

5ζ35
)

TrK/Q
(√

5ζ25
)

TrK/Q
(√

5ζ5
)

TrK/Q
(√

5
)

TrK/Q
(√

5ζ45
)

TrK/Q
(√

5ζ35
)

TrK/Q
(√

5ζ25
)

TrK/Q
(√

5ζ5
)

TrK/Q
(√

5
)

TrK/Q
(√

5ζ45
)

TrK/Q
(√

5ζ35
)

TrK/Q
(√

5ζ25
)

TrK/Q
(√

5ζ5
)

TrK/Q
(√

5
)

 =


0 5 −5 −5
5 0 5 −5
−5 5 0 5
−5 −5 5 0

 .
(26)

they are more likely to have a large length for the shortest
nonzero vector. In search of such lattices, we have proved
that there is no modular lattices built using Construction
A over cyclotomic fields of prime power order pn, with
n > 1. We have also presented a new framework based
on Construction A and cyclotomic number fields giving us
a family of p-modular lattices with p ≡ 1 (mod 4).
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