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Abstract—Unidirectional or one-way relaying, where two
wireless nodes, each of which would like to create an in-
formation flow from one node to the other one via a single
decode-and-forward (DF) relay, has been an active area of
recent research. We consider an additional secrecy constraint
for protection against an honest but curious relay. Indeed,
while the relay should decode the source message, it should
be fully ignorant of the message content. We provide a secure
lattice coding strategy based on quasi-cyclic low-density parity
check (QC-LDPC) lattice codes for unidirectional Gaussian
relay channels. QC-LDPC lattice codes are carved from infinite
QC-LDPC lattices using a shaping algorithm. These lattice
codes are practically implementable in high dimensions due
to their low-complexity encoding and decoding algorithms.
Our proposed scheme combines a Rao-Nam like encryption
with a new DF relaying scheme for QC-LDPC lattice codes.
Some chosen-plaintext attacks and recent attacks on the Rao-
Nam like schemes are considered over the proposed scheme.
The scheme is efficient due to its high information rate and
low overhead of the encryption and decryption algorithms. Ac-
cording to our simulation results, the proposed relaying scheme
outperforms its counterparts in terms of error performance,
efficiency and security.

Index Terms—One-way relaying, QC-LDPC lattice, Rao-
Nam scheme.

I. INTRODUCTION

In the Recent years, an explosive growth has been hap-
pened in the generation of mobile data by wireless devices.
After emerging the Internet of Things (IoT), the amount of
traffic from wireless and mobile devices is predicted to be
more than 63 percent of total IP traffic by 2021 which is
expected to be three times as high as the global population
in 2021 [1]. To keep pace with such demands, the primary
challenge is how to increase the data transmission rate
over a bandwidth limited wireless radio channel with high
reliability and security and, at the same time, as low power
consumption as possible. One of the effective solutions to
increase the range and reliability of wireless networks is
cooperative relaying. Lattice codes are one of the effective
coded modulation schemes for bandlimited AWGN channels.
The use of lattice codes in relay networks has received sig-
nificant attentions in recent years [2]-[9]. Among different
relaying strategies, amplify-and-forward (AF) and decode-
and-forward (DF) relaying are two of the most popular
relaying protocols. In fact, these two relaying schemes have
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been widely adopted in practice [10], [11]. It was shown in
[3], [5] and [6] that lattice codes can achieve the DF rates
for the relay channel. All of these achievable schemes rely
on asymptotic code lengths, which is a drawback in practical
implementation.

Most of the previous AF and DF relaying strategies
assume that the relay operates in half-duplex (HD) mode,
i.e., the relay can either transmit or receive on a single
channel, but not simultaneously. While the ideas of full-
duplex (FD) radio have been around for a while, it is not
until recently that a number of encouraging FD designs have
been proposed to overcome the self-interference problem. It
has been demonstrated in [12], [13] that the information rate
achieved by FD relaying is better than that of HD relaying
in different wireless environments. Recently, two practical
schemes have been proposed based on low-density lattice
codes (LDLCs), for the real-valued, full-duplex one-way and
two-way relay channels [4], [6] which have been developed
for quasi-cyclic low-density parity check (QC-LDPC) lat-
tice codes afterwards [7], [8]. In this work, we propose
another scheme, based on QC-LDPC lattice codes, which are
Euclidean space analogous to binary QC-LDPC codes, for
the real-valued, full-duplex one-way relay channels which
outperforms the proposed schemes in [4], [8] and [7] in
terms of error performance, efficiency and security. As an
advantage, in QC-LDPC lattice codes both the encoder and
the channel use the same real algebra which is natural for
the continuous-valued AWGN channel.

Security of wireless networks has been considered a
challenging task due to the broadcast nature of wireless
environments. While traditional approaches are based on
cryptographic methods [14], physical layer security methods
are based on information theory [15]. In wireless physical
layer security, the key idea is to exploit the characteristics
of wireless channels to transmit a message from a source
to a destination while keeping this message unrevealed
from passive eavesdroppers. Here, the relay nodes can be
considered as trusted nodes to provide a secured transmission
in the presence of one or more eavesdroppers. There is
another method, so-called cooperative jamming in which a
weighted jamming signal will be generated from the relay
to confound the adversary. Most the works on cooperating
relaying under the context of physical layer security, only
consider HD relaying. Given the recent developments, the



capability of a FD relay to further enhance the secrecy is
certainly appealing. However, to date, a little work has been
done for FD relaying. In recent works, FD relaying has
been used for sending jamming signals to the eavesdropper
while forwarding information signals to the destination [16].
The main drawbacks of these studies is the assumption of
significant suppression of self-interference in FD operation.
The optimal power allocation scheme and the secrecy rate of
a FD relay wire-tap channel under the assumption of residual
self-interference are investigated in [17] and [18] for AF and
DF relaying, respectively.

Security against an eavesdropping two-way relay using
friendly jammers that create a wiretap channel, was con-
sidered in [19]. In this model, the relay node is treated as
an eavesdropper from whom the information transmitted by
the sources needs to be kept secret, despite the fact that its
cooperation in relaying this information is essential. Here, a
key assumption is that the sources have perfect knowledge
of the jamming signals transmitted by the friendly jammers.
Application of lattice codes for Gaussian wiretap channels
has been considered in [20]. Security of a network with sev-
eral two-way relays in companion with cooperative jamming
was considered in [21], where a lattice-based scheme was
proposed.

As mentioned above, the traditional security approaches in
wireless networks are based on cryptography. Lattice-based
cryptography and its counterpart code-based cryptography
are two strong candidates of post-quantum cryptographic
methods [22], [23]. The first public-key cryptosystem based
on error-correcting codes was introduced by McEliece.
Secret-key cryptosystems have smaller key sizes than public-
key cryptosystems and also offer a higher level of security.
Hence, several secret-key variants of McEliece system like
Rao and Nam (RN) [24] cryptosystem have been proposed
to reduce the key sizes. In [25], QC-LDPC lattices have been
exploited to design a Rao-Nam like encryption scheme.

Our proposed scheme, in one hand can be seen a mech-
anism that provides security against an eavesdropping one-
way relay using a friendly jammer. Thus, it can be consid-
ered as a physical layer security scheme. From another point
of view, it provides security using a lattice-based secret-
key encryption scheme. Consequently, it can be considered
in the intersection of two different paradigms of providing
security in the wireless networks. The main contributions of
this paper can be highlighted as follows:

o We present a new full-duplex one-way relaying scheme
based on QC-LDPC lattice codes that outperforms those
proposed in [7] and [8],

e We combine a Rao-Nam like encryption with the pro-
posed DF relaying scheme that can also be modeled
using a friendly jammer in wireless physical layer
security,

o The scheme is secure against chosen plaintext attacks
and recent attacks on the Rao-Nam like schemes,

o The scheme is efficient due to its high information rate
and low overhead of the encryption and decryption
algorithms both of which are linear in terms of the
lattice dimension.

The rest of this paper is organized as follows. In Section II,
we provide the required background on lattices; the main

concepts of QC-LDPC lattices. Section III introduces a
secret key cryptosystem based on QC-LDPC lattices. Sec-
tion IV is devoted to a new secure full-duplex one-way
relaying scheme based on QC-LDPC lattice codes. Section V
provides the simulation results. Section VI deals with secu-
rity analysis of the proposed scheme. Finally, Section VII
summarizes the paper and provides the concluding remarks.

II. PRELIMINARIES ON LATTICES

A discrete, additive, subgroup A of the m-dimensional
real space R™ is a lattice. Every lattice A has a basis B =
{b1,...,b,} CR™ where every x € A can be represented
as an integer linear combination of vectors in B [26]. For a
lattice point x in A C R™, a Voronoi cell V(x) is the set of
those points of R”™ that are at least as close to x as to any
other point in A. We call the Voronoi region associated with
the origin, the fundamental Voronoi region of A, denoted by
V or V(A).

We say that a lattice A; is nested in A, if Ay C A.. Using
nested lattices in R, define the codebook C = V,NA. which
has the rate

R = —logy(|C|) = —log, (vol(Vc)) ' v

A. QC-LDPC Lattices

The encoding and decoding operations of a general ran-
dom lattice are challenging problems. Researchers have
studied practical implementable lattices and lattice codes.
Quasi-cyclic low-density parity check (QC-LDPC) lattices
are an instance of such studies [27]. These lattices exploit
Construction A lattices [28] together with a QC-LDPC code
[29] as their underlying code.

Assume that C is a linear code over IF, where p is a prime
number, ie. C C ]F;}. A lattice A based on Construction
A [28] can be derived from C as follows

A=pZ" +€¢(C), 2)

where e: F) — R™ is the embedding function. In this
paper, we are particularly interested in lattices with p=2
and consider a subclass of Construction A lattices that has
efficient encoder and decoder [27].

Definition 1: A QC-LDPC lattice A is a Construction A
lattice such that its underlying code C is a QC-LDPC code
with quasi cyclic parity check matrix H.. Equivalently, x €
Z™ belongs to A if and only if H,.x" =0 (mod 2).

The generator matrix of Construction A lattice A using the
underlying code C C F% is of the form
_ I Ak (n—k)

Ga = O—ryxr 2Lk ’ 3
where G¢ = [ I Apxn—r) } is the generator matrix of
C in systematic form, £ is the rank of C, I and 0, _p)xx
are the identity matrix of size k£ and the all zero matrix of
size (n — k) x k, respectively.

B. Shaping Methods for QC-LDPC Lattices

In [7] and [27], several efficient and practical shaping
algorithms were proposed for QC-LDPC lattices. In order
to perform shaping, the integer vector b is restricted to the
following finite constellation

—L;
2

biELi:{JJEZ

L.
gxg;—l}, i=1,...,n, (4)



in which all the L;’s are even integers. The lattice codeword
x = bGy, is shaped by translating each b; by an integer
multiple of L;, ¢ = 1,...,n. Thus, the transmitted lattice
point x’ is

x' = (b —sL)Gj = x — sLG,, (5)

where L = diag(L1,...,L,) is a diagonal matrix and the
new integer vector is b’ = b — sL. The choice of integer
vector s, depends on the employed shaping method. In
hypercube shaping we choose s; = s3 = -+ = s, = 0.
Thus, we have b = b; and |z}| = |b;| < L;, fori =1,... k.

Fori=Fk+1,...,n, we choose s; as follows
k
1 1
si= |7 (bt gD Ay || 6)
7 ]:1

where A;; is the (4,j)th entry of A in (3). Note that,
after finding the shaped lattice codeword as discussed above,
we must scale it by factor 2 and then translate it by
(—1,...,—1). The proposed algorithm in [27] explains the
method of obtaining original information b from the shaped
lattice codeword x’. The complexity of this algorithm is
O(nd), where d is the average number of nonzero elements
in a row of G,. We use the notation MOD( ) in the case of
using the reverse of shaping algorithm.

In order to improve the shaping performance, we consider
nested lattice shaping, which is suboptimal but it offers more
shaping gains comparing to hypercube shaping [7]. First,
limit the rate of the code by restricting the integer row vector
b to take values from a finite constellation in which b; €
L; =40,...,L; — 1} for each ¢ = 1, ..., n. Similar to the
hypercube shaping, let x’ = (b — sL)G,. In this case, we
choose the vector s as follows

s = argmin ||(b — soL)G 4|2 7
SoEL™
The complexity of solving (7) is exponential in the dimen-
sion of lattice, even when restricting the components of b.
Using the triangular structure of the generator matrix G,
the authors of [27] suggested a tree search with affordable
complexity for shaping their lattices.

C. Encoding and Decoding of QC-LDPC Lattices

In the sequel, we present the decoding of QC-LDPC lat-
tices, which is proposed in [27]. Construction and decoding
of these new lattices can be done using the following steps.
First, convert the codewords of [n, k] binary code C into %1
notation (convert 0 to —1 and 1 to 1) which produces a set
A(C) consisting of the vectors of the form

c+4z, ceC,zeZ". ®)

The set of points in (8), strictly speaking, is not a lattice,
but a lattice translation by vector (—1,—1,...,—1). How-
ever, A(C) is closed under the following addition. For any
A1, A2 € A(C), we have [7], [8]

)\1@)\2é)\1+>\2+(1,...,1)EA(C). )

The encoding of an integer row vector b € Z" can be done
as follows

E(b) =2bGy — (1,...,1), (10)

where £ is encoding function and G is defined as (3). Let
X = ¢ + 4z be the transmitted lattice vector and y be the
received vector from AWGN channel

y =c+ 4z + n, (1

where ¢ € C and C is a binary LDPC code in 41 notation,
z € Z" and n ~ N(0,02). First, we decode c and next we
find z. The proposed algorithm in [27] is similar to the sum-
product algorithm (SPA) for LDPC codes in message passing
structure [30]. The inputs are the log likelihood ratios (LLR)
for the a priori message probabilities from each channel. The
estimation of the LLR vector v = (v1,...,7,) for LDPC
lattices is proposed in [27] as follows

Pr{c; = —1ly;}
o5 (Frie =) )
2 (( — ()2 — (e - L(%“m?)

Vi = 12)

(1>

2

where |x] is the nearest integer to x. Input the LLR vector
¥ = (7,-.-,7) to SPA decoder of LDPC codes and
consider ¢ as the output of this decoder. Convert ¢ to
+1 notation and call the obtained vector ¢’. Estimate z as

follows R
. y ¢

Z=|>——|.
4 4

Then, X = ¢ + 4% is the final decoded lattice vector. The
complexity of this decoding algorithm is significantly lower
than other lattices with practical decoding algorithm like
LDLCs [31].

13)

III. SECRET KEY CRYPTOSYSTEM BASED ON QC-LDPC
LATTICES

In this work, we use a Rao-Nam like secret key encryp-
tion scheme that uses QC-LDPC lattices in its design [25].
Encryption is done using the following two secret keys [25].

1) A secret (n — k)-bit initial value of a Linear Feedback
Shift Register (LFSR).
2) An n x n block diagonal permutation matrix P as

follows
™ 0 .- 0
0 m - 0
P = , (14)
0 O The
where the diagonal elements m;, for ¢ = 1,...,ng, are

b x b permutation submatrices.
Another secret parameter is the parity check matrix Hy. of a
random regular (n = ngb,r = b, w)-QC-LDPC code of size
rxn and constant row weight w, where ng is a non-negative
integer and b is the size of circulant matrices. We use this
parity check matrix in the decryption process. These keys
are shared by the authorized sender and receiver. The secret
(n — k)-bit initial value of the LFSR are used to generate a
sequence of 2"~ ¥ pseudorandom syndromes synchronously.

To encrypt a message m € Z™, a pseudorandom syndrome

s € F7 " is generated using the LESR. An error vector e(s)
is considered as

e(s) =s(H_ ! (mod 2),

qc

s)



where H;cl is the right inverse of the parity check matrix of
the QC-LDPC lattice H,. in Fy. The error vector e(s) has
fixed zero coordinates which leads to information leakage.
Therefore, the perturbation vector e, is defined

e, = e(s) + b(s) (mod 2). (16)

The non-zero coordinates in b(s) can be filled with s bits
(the complement of the syndrome vector s in Fy) or a
succession of these bits in the case n — k < k.

The ciphertext is computed as follows

y = (2mGp — 1 + 2e,)P, (17)

in which 1 indicates the all-ones vector.
The authorized receiver attempts to decrypt the received
encrypted signal y as follows:

1) Multiply y by P~! = P?!
y =yP!'=2m'Gp — 1+ 2e,,.
2) For the corresponding syndrome s, calculate the pertur-

bation vector e, and obtain y” =y’ — 2e,,.
3) Recover the vector m as (y” + 1)%(}/—\1, where

I — 3 Ak (n—k)
O(n—k)xk 3Tk
IV. SECURE ONE-WAY RELAYING SCHEME BASED ON

QC-LDPC LATTICE CODES

A. One-Way Relay Channel

Let xs and xp denote the signals transmitted by the
source and the relay, respectively. Denote the received
signals at the relay and the destination by yr and yp,
respectively, which have the following forms

Gl = (18)

YR 19)
yp = (20)

where zg ~ N (0, Ng), zp ~ N (0, Np). Moreover, hgr =
dgp', hsp =1, and hrp = d7? are the path loss channel
gains between source, relay, and destination. We assume the
distance between the source and the destination to be 1 (other
distances are normalized). We define dgr and drp as the
distance from source to relay and relay to destination, and oy
and ao as their corresponding path-loss exponents. We also
consider Pg and Pg, as the constraints for the average powers
of the source and the relay transmissions, respectively. To
the best of our knowledge, the capacity of this channel, in
its general form, is unknown. However, some DF schemes
are available, like the one which is proposed in [32], that
achieve the following inner bound:

hSRXS -+ ZR
hspXs + hrpXg + zZp,

h%,PsE {x2
R < 1min{log2 <1+SRS{XS}>’ Q21
2 Np
log <1+ hQSDpsE{X%}+h2RDPRE{X%{}>}
9 .
Np

In the rest of this section, we present a secure practical block
Markov encoding scheme for the one-way relay channel
based on QC-LDPC lattice codes. The employed lattice
decomposition method in this paper is proposed in [6]
for LDLCs that achieves the decode-and-forward bound
theoretically. Due to the structural differences between QC-
LDPC lattices and LDLCs, as well as, differences between

our shaping methods and theirs, and moreover due to the
added security feature in this paper, all steps of this scheme
are rephrased for QC-LDPC lattice codes. To the best of our
knowledge, there is no secure lattice based relaying scheme
in the litrature similar to the one proposed in this paper.
Indeed, the security feature is lacked in all perevious similar
schemes [4]-[8].

We employ doubly-nested lattice codes in which Ag C Ag
are the shaping and coding lattices, respectively. Thus, the
considered codebooks are Cs = A N V(AY). We also
assume that 02(ASS) = hggrPs. There is another lattice,
which is referred to as meso-lattice, that partitions the lattice
codebook into lower-rate constituent codebooks [6]. All
above lattices are nested as A% C A,,, C Ag. The resolution
codebook is Cgr) = AZNV(A,,) and the vestigial codebook
is C& = A, NV(AY). Let Rg, RY), R be the rates of
Cs, Cg), C(Sv), respectively. Then, we have Rg = Rg)+R(SU).
In the preceding code construction, every full-rate codeword
has a unique decomposition as a modulo sum of resolution
and vestigial codewords.

B. Decomposition of QC-LDPC Lattice Codebooks

Let b € 7Z" be the information vector, where each
element b; of b is drawn from finite constellations
{-L;/2,...,(L;/2) — 1} and {0,...,L; — 1} for hyper-
cube shaping and nested lattice shaping, respectively. The
i'" element of the resolution component b,. is

b =b; (mod L"), (22)

where L; = ﬁLgr), for some 3 € Z. Thus, the i*" element of
b(") lies in the finite constellation LZET) = i(), . ,LZ(-"A) - 1}
and the rate of the obtained codebook R("

via Equation (1) and the amount of LZ(.T)’S.
The vestigial component is defined as follows

b =b— b,

can be acquired

(23)

If the employed shaping method is hypercube shaping, it can
be shown that the i*” element of b(*) lies in the following
finite constellation
W _[=Brm B+ .n  B=2) ¢

£7/ —{QL,L 7?[/1 7.-.7TLZ‘ }.
(24
If the employed shaping method is nested lattice shaping,
the i*" element of b(") lies in the finite constellation
{0, LET), 2L§-T), (B 1)LET)}. The rate of the vestigial

codebook is approximately R(") = log,(3). Due to the
aforementioned assumptions, each codeword x = &(b)
decomposes into its resolution component x(") = £(b("))
and its vestigial component x(*) = £(b(")) as x = x(") @
x(® = x4 x4 (1,...,1).

C. Power-Constrained Decomposition of QC-LDPC Lattice
Codebooks

Given the information vector b, the shaped lattice code-
word is x’ = £(b —sL), where s is given in (6) and (7), for
hypercube shaping and nested lattice shaping, respectively.
We shape the resolution component b(") to b/(") in such a
way that the decomposition of the lattice codebook remains
linear
b = smod(b;, L") — s L8,

7

(25)



where b; and b;(r) are the " elements of b and b/("),
respectively, and
_J 2=z (mod L), ifz<Z,
smod(z, L) = { x (mod L) — L, otherwise. (26)
We choose the elements of s(") according to
1 1¢
(r _ (r) Cp(m) s
Si = F bl +§ij,lbj y z—l,...,n,
i j=1
27

for hypercube shaping. For nested lattice shaping, we con-
sider b;(r) = b; (mod LET')) - SY)LET), where s(") is given
by (7). Indeed, the smod function is regular modulo oper-
ation, when the employed shaping method is nested lattice
shaping. Then, the shaped resolution component is given by
x'(") = £(b/("). We map the vestigial integer vector b(*)
to b'(") as follows

b,(v) —b b(7) _ b(U) _ SL, (28)

where s is given in (6) and (7), for hypercube shaping and
nested lattice shaping, respectively. Using this decomposi-
tion gives us b’ # b'(") 4+ b/(*) in general. However, the
decomposition preserves componentwise modulo linearity,
that is, b} (mod L;) = b (mod L{"™)+b") (mod L;).
Then, the vestigial codeword is x'(*) = £(b’(")) and we
have x’ = x(") @ x'("). As before, the vestigial lattice
codeword x/ does not need to fulfil any power constraint.
The original information vectors b, b(*) can be recovered
from b’, b’(") by using the proposed MOD algorithm in [7]
with L = (L4, ..., Ly,). Similarly, the resolution information
vector b(") can be recovered from b’(") by using MOD
algorithm with L(") = (L(l/")7 L.

D. Encoding and Decoding in Secure One-Way Relay Net-
works

In the rest of this section, we present the implementation
of a secure encoding-decoding scheme over one-way relay
networks using QC-LDPC lattice codes which is based on
the proposed framework in [6, Section IV-E] for LDLCs
and the proposed secret key scheme in [25]. Next, we
discuss our decoding scheme at the destination. We assume
that the source S is using QC-LDPC lattice codes in its
transmissions. We assume that the " element of bg is
chosen from a constellation of size Lg. The i*" element of
the resolution codewords are selected from a constellation
of size L"), where L'" divides Ly ; [6].

First, we describe the encoding steps. For ¢t = 1,...,T,
let mJt] denote the plaintext of source S at block ¢ which
is intended to be sent to destination D and it should be
unrevealed for the relay R. Meanwhile, the relay should
facilitate the communication between S and D. It should
be able to decode the received information from the source
and forward its resolution component without knowing the
content of the message. We assume that the matrix Hy P is
given to the relay, but the value of perturbation vector e, [t],
fort =1,...,7, is only known by S and D.

Let m = m[f] € Z" be the plaintext, where each
element m; of m is drawn from finite constellations
{—-(Li—=2)/2,...,(L;/2) — 2} and {1, ..., L; — 2} for hy-
percube shaping and nested lattice shaping, respectively. For

a given secret value e, consider e; = e, —4al,, in which
the vector o will be obtained as follows.

We choose a such that the components of the vector w,, =
e,G," lie in the interval [—1,1], i.e. lwy, ;| <1, for i =
1,...,n. To this end, we need to solve the following system
of linear equations

(w;,l, e wz/m) =
(6;71, .. 76;7771/) {

by choosing an integer vector & = («q,...,ay,) such that
|w;’i| < 1 for i = 1,...,n. From (29), we have the
following equations

I — 2 Ak (k)

9
O(n—k)xk sl k 29

’ 61,’1'—4041', Z:L,k
w . = o .

Pyt %(em —4da;) + Z?:l Aj,ie;)j, i=k+1,...,n.

(30)

By choosing oy = ag = - -+ = ay, = 0, we have 6;),1' =ep;
and |wy, ;| = lepi| < 1, for i = 1,...,k Fori = k +
1,...,n, we have the following inequality .
€p,i 1 1

epi 1 1
1 —i—ZZAj,iep,j <a; < Z’ +§_12Aj’iep’j'
j=1 =t

This interval contains only one integer number which is the
unique solution

k
1
a; = Z €pi — ZAj»iepd (31)
j=1
Given e;, then e, can be obtained by computing the

components of ej, modulo 4. Now, we consider bglt] as
bg[t] = mlt] + e;le and its corresponding lattice vector
as xs[t] = € (bglt]) P.

For t = 2,...,T, the transmitted signals by the source
S is \/Psx[t]. The matrix H, P is given to the relay
from which it obtains an equivalent generator matrix G/, =
TGAP for the lattice, where T is a unimodular matrix
(an integer matrix with determinant +1). After decoding,
the relay uses the generator matrix G/, for re-encoding the
resolution component of the received lattice vector. During
the time interval ¢, where 2 < ¢ < T, the relay receives the
signal from S at t** block while it is transmitting the reso-
lution component of the decoded codeword PRx/g) [t—1].
During the block ¢ = 1, the relay transmits nothing and at
block ¢ = T+1, the source receive the resolution information
VPrx\[T) from the relay.

Next, we describe the decoding steps. The decoding
occurs in three phases.

Phase 1: Using the parity check matrix H, P, the relay
decodes the codeword x[t] by using its received signal at
the ¢! block

yr[t] = /Pshsrxst] + zglt].

For a given source vector xx[t] = 2bi[t]|GAP —(1,...,1),
there exists a vector b, [t] such that 2bg[{|GAP —
(1,...,1) = 2bg,[t]G}y — (1,...,1) which implies
bs[t|GAP = by, [{|TGAP. Thus, we have bi[t] =
5.1 [t]T and consequently

(32)

b’ [t] = smod(bls, L") = smod (bl , [t T, L))

= smod (b [t T, L™)). 33)



Using the QC-LDPC lattice decoding which is denoted by
DEC ppcr(y, 0?) (we use y and o to estimate LLR vector
in (12), the relay estimates b , [t] as follows

. . t] Ng

1.[t] = %[t] = DEC yelt] )
Xp[t] = x5[t] LDPCL (\/]TShSR NI

salt] = [D &) G (34)
where D(x1,...,2,) = 0.5 X (1 4+ 1,...,2, + 1). Then,

the resolution information vector of b/y[t] can be obtained
by applying smod function in (26) as follows

I;g,)i = smod (A’R,i, Lgr)) .

blt] =

(35)

Using the shaping methods, the relay maps Bg) [t] to lf);(;) [t]

b1 = bt —sgL®, (36)

where sp is given in (27) and (7) for hypercube shaping and
nested lattice shaping, respectively. Then, the shaped lattice
codeword is X\ [t] = £ {B/(T) [tﬁ During block ¢ + 1, the
relay transmits \/PRA/(T)[ t].

Phase 2: In this phase, destination node decodes the

resolution codeword x(sr) by using its received signal in
block ¢ + 1

—hRD\/EA/(T)
+ hspv/ Psxg[t + 1] + zpt + 1].

Giving the scaled version of y,[t + 1] to LDPC lattice
decoder yields

~ g 1 N
b/s(,rl) [t = {D (DECLDPCL (yD[I;H, ’YD)> Gy 1—‘

where v = hrp+/ Pr. Let

b1 [t] = smod (IN)/S(S) [t], L(T)> , 37)

b [t] = smod2mod (bl[t], L(T)) , (38)

in which the function smod2mod(z,
is applied componentwise

x, if0<x< -1,
z+ L, if L<x<0

L), that is defined next,

smod2mod(x, L) — { (39)

Now, since the legitimate destination knows the the value of
matrix T, using Equation (33), the resolution information of
source S will be obtained as follows

b [t] = by[f] T (mod LM).

Phase 3: In this phase, S decodes the vestigial
codeword X(S) First, it computes X(T t] = £ (T)[])P.

(40)

Thus, i/}g) [t — 1] and xg)[t] are obtained from
yplt] and yh[t + 1], respectively. Then S subtracts
hspV/Ps (K[ + (1, 1) + hapy/Prx[t — 1))
from y’,[¢] that ylelds

y'é[t] = hsp Psxgv)[t] +ep + Z[)[t}7 “1

where ep is
eD:hSD\/PS |:Xg«") —5(‘(;)[}}

+hRD\/PR[ Ot —1) - *;;”[t—u}. (42)

Then, S uses QC-LDPC lattice decoding to find
Bﬁé”)[t] =L"o |D (DECrpper (ypP',op)) G|, 43)

where o denotes the Hadamard product or entrywise product
YD Ji N
L hep/Ps L hsovPs
The vestigial information is Bg))[ t] = smod(b/(v [t], Lg).
Hence, the shaped and unshaped full-rate information
vectors of S are b[t] = Bg [t] + b'(u)[] and bglt]
Bg) 4] +l~)(sv) [t], respectively. Using the secret parameter e
the destination obtains m[t] as m[t] = bg[t] — e;)GXI
Note that the above decoding process is presented for
the case that the employed shaping method is hypercube
shaping. When the employed shaping is nested lattice shap-
ing, this decoding steps are still valid by changing smod
function into regular modulo operation. This is due to the
fact that, the components of lattice vectors, given as the
inputs for hypercube shaping and nested lattice shaping, are
drawn from different sets. For hypercube and nested lattice
shading methods we use the sets {—L/2,...,L/2 — 1} and
{0,..., L — 1}, respectively.

of vectors, yp,; = and op; =

/
D

V. NUMERICAL RESULTS

In the simulations, we have used binary QC-LDPC
codes with (n, k) = (1000, 850), (5000, 4250) as underlying
codes, where n and k are the codeword length and the
dimension of the code, respectively. Symbol error rate (SER)
performance of QC-LDPC lattice codes are plotted against
the sum power at source and the relay, i.e., PgFE {x%} +
PrE {z%}. We have considered di = dgg = 0.9, dy =
drp = 0.1 and dgp = 1. The path loss exponents are
a1 = 1, ag = 2. The variances of the noise at the relay and
destination are N, = N; = 0dB. The maximum number of
iterations in each step of the decoding is assumed to be 50.
We have considered L; = 8, for i = 1,...,n. Thus, for the
cases in which we have employed hypercube shaping, based
on (1), the corresponding rate is 3 bits/integer. For employing
nested lattice shaping, we consider L; = -+ = Ly = 8
and Lg4qy = --- = L, = 4. Then, based on (1), the
corresponding rate is 2.85 bits/integer. In order to achieve
these rates, according to (21), the total required powers are
P = PsE {x%} + PrE {x%} > 51.88 = 17.15dB, and
P> > 41.2 = 16.15dB, respectively.

In Fig. 1, we have presented SER variation versus sum
of transmission powers for both nested-lattice shaping and
hypercube shaping. In [4], the implementation of block
Markov encoding was proposed for LDLCs. We have consid-
ered hsp, hsgr, hrp and other parameters similar to their
corresponding values in [4]. The SER performance of an
LDLC lattice code with dimension 1000 and rate 2.78, which
is obtained by employing nested lattice shaping, at 104
is 3.77dB away from its corresponding DF inner bound,
which is 15.77dB. We observe that using the proposed
scheme in this paper, the SER performance of a QC-
LDPC lattice code of length 1000 at 10~* is 4dB away
from its corresponding DF inner bound. Using the proposed
scheme in [7] and [8], the SER performance of a QC-LDPC
lattice code of length 1000 at 10~* is 4.5dB away from
its corresponding DF inner bound. Thus, in addition to the
fact that the new scheme has the same complexity as those
proposed in [7], [8], it outperforms both of them in terms
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Fig. 1: SER of QC-LDPC lattice codes and LDLCs over the

one-way relay channel.

of error performance. However, the proposed scheme for
LDLCs have about 0.23dB better performance compared
to our scheme. This is a natural result, due to the better
SER performance of LDLCs compared to QC-LDPC lattice
codes, over AWGN channels and also a bit difference in the
considered parameters. The decoding complexity of LDLCs,
by using proposed decoder in [33], is at least 24 times more
than the decoding complexity of QC-LDPC lattices. Indeed,
the decoding complexity of a QC-LDPC lattice of dimension
1000 is equivalent to the decoding complexity of an LDLC
with dimension 24000. Results of Fig. 1 show that the
increase in the dimension of the lattice can decrease the gap
between DF bound and the performance curve. Using a QC-
LDPC lattice code of dimension 5000 instead of dimension
1000 makes about 0.1dB improvement in the performance.
This analysis also indicates the efficiency of our proposed
scheme compared to its counterparts [4].

VI. CRYPTANALYSIS

The main advantage of the proposed scheme is providing
security against an honest but curious relay and at the same
time employing its potential to improve the communication
quality between a source and a destination. For the brute
force attack on the relay that searches all possible secret
keys, the number of block diagonal permutation matrices
(14) is (b!)*, where x = n/b. Considering b = 100 and
x = 10, the lattice dimension n is high enough to avoid this
attack. Moreover, the number of different error patterns e,
is given by 27%, which is equal to 2'°° for the lattice of
dimension 1000 considered in the simulations. Therefore, the
proposed scheme is resistant against the brute force attack.
Furthermore, the resistance of the schemes proposed in [24]
and [25] have already been shown against chosen plaintext
attacks, e.g. Rao-Nam and Struik-Tilburg attacks. In the
sequel, we analyze the security of our proposed scheme
against Rao-Nam attack.

The received vector at the relay is given in (32) from
which the vector x4[t] = 2bg[t]|GAP — (1,...,1) is

obtained. It is noteworthy that the probability of decoding
failure in the relay is negligible, because the quality of the
channel in which the relay is working is desirable. Indeed,
the position of the relay is optimized to guarantee the quality
of the channel. Otherwise, the failure in the first phase of
decoding process results in the connection outage between
the source and the destination nodes. Thus, we have

2b[t|GAP — (1,...,1)

= 2(bs[t] —sL)GAP — (1,...,1)
= 2(m []—sL+eGA1)GAP (1,
= 2m'G) —(1,...,1) +2¢,P,

xg[t] =
1)

where Gy = GAP and m’ = mlt] — sL. Let m} and
m), be two plaintexts differing in only one position, that is,
m) —m) = u’ = (0,...,0,my; — ma;,0,...,0) with a
single nonzero component m/; — mj, in the i-th position.
We have

/ / !
X1 = 2m1GA -

;o I
Xy = 2myG) —

a,...,
a,...,

1) +2e P,
1) + 2e; P
It follows that

x| —xbh =2u'G) +2(e} , — €} )P

= 2(171/11 - méz)g; + 2(el1,p - e/2,p)P7

where g! is the i-th row of the G/;. Thus, if the majority of
the bits of the vector x| — x/, are those of g/, then x| — x5
may be considered as an estimate of g/. This could happen
if the Hamming weight of 2(e} , —ej5 ) is small. However,
a chosen-plaintext attack can succeed only when the ratio
of the Hamming weight of e; over n is small and it will
not if the average weight of the vector is approximately
n/2 [24]. Based on the computation of the perturbation
vectors, the Hamming weight of the generated perturbation
vector ey, is at most n and is approximately n/2 on average
[25]. It remains to prove that the Hamming weight of e;) is
approximately n/2 on average, too. Using the assumptions,
e, = e, —4al,, where « is given in (31). Since e}, and e,
are equal in the first £ positions, the average weight in the
first k positions is k/2 due to the uniform distribution of non-
zero components of e,. Here, the constraint on the design
of QC-LDPC lattices is helpful implying that k& > 0.85n
[29]. This gives a lower bound on the average Hamming
weight of e, as k/2 = 0.42n which is close to n/2. Next we
give a more precise analysis of the Hamming weight of e;,.
Define the random variable W = Y, v1le s in which
e, = = 1life,; # 0and 1, ;i = 0 otherwise. Then the
average Hammlng weight of ep is k/2+E(W) and E(W) =
Yk Prien #0} =3y, [1-Pr{e,,; = 0}]. For
i=k+1,. nwehavee ;, = 0if and only if e, ; = 4o
which is p0551b1e if and only 1f o; = 0. Hence, it is enough
to compute Pr{o; =0}, fori =k+1,...,n. From o; =0
we obtain the following inequalities

1
_§ ep’ Z Ajiep *a (44)
which is equivalent to to the inequality e,; — 2 <

Z§=1 Ajiep; < epi+ 2. The left side of this inequality
is always true, because e,; — 2 is a negative number and



Z?:l A ey ; is always a non-negative number. In order
to make the right side of this inequality invalid, it suffices
to choose the underlying QC-LDPC code C such that the
non-identity part of its systematic generator matrix, i.e., the
matrix A in (3), has minimum column weight more than
3. This happens naturally, since the parity check matrix
is sparse and its systematic generator matrix is definitely
a dense matrix. Consequently, Pr {e;m # 0} =1 for: =
k+1,...,n and we have E(W) = n — k. We conclude
that almost all e ;8, for 2 = k4 1,...,n, are non-zero
and the average Hammmg weight of e, is (n — k) + k/2.
Hence, a lower bound on the complexity of this attack is
(,"&) = (; 55,) Which is of order O(2"/?) and makes the
attack infeasible, as n grows. More attacks can be considered
like the ones in [25], but we cannot provide them here due
to the lack of space. The proposed scheme is vulnerable to
active attacks like denial-of-service (DoS) attack, because
any intervention of an attacker that causes the decoding
failure at the relay results in the connection outage between
source and destination.

VII. CONCLUSIONS

In this paper, we have designed a new full-duplex one-
way relaying scheme based on QC-LDPC lattice codes.
The proposed scheme outperforms the available preceding
scheme based on QC-LDPC lattice codes in terms of symbol
error performance. Next, we have combined a Rao-Nam like
encryption with the proposed DF relaying scheme. The main
reason for considering an additional secrecy constraint is
to provide protection against an honest but curious relay.
Indeed, while the relay should decode the source message
and improve the communication quality between the source
and the destination, it should be fully ignorant about the
message content. Some chosen plaintext attack scenarios
and recent attacks on the Rao-Nam like schemes have been
considered over the proposed scheme and it has been shown
that our proposed scheme withstand all known types of
cryptanalytic attacks. Furthermore, the scheme is efficient
due to its high information rate and low encryption and
decryption overheads.

REFERENCES
[1] “Cisco visual networking index: Forecast and methodol-
ogy, 2016-2021,” https://www.cisco.com/c/en/us/solutions/

collateral/service- provider/visual-networking-index-vni/
complete-white-paper-c11-481360.html, note =, Sept. 2017.

[2] B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing inter-
ference through structured codes,” IEEE Trans. on Inf. Theory, vol. 57,
no. 10, pp. 6463-6486, Oct. 2011.

[3] N. Yiwei and N. Devroye, “Lattice codes for the gaussian relay chan-
nel: Decode-and-forward and compress-and-forward,” IEEE Trans. on
Inform. Theory, vol. 59, no. 8, pp. 4927-4948, Aug. 2013.

[4] N. S. Ferdinand, M. Nokleby, and B. Aazhang, “Low density lattice
codes for the relay channel,” in [EEE International Conference on
Commun. (ICC), 2013, Jun. 2013, pp. 3035-3040.

[5] M. Nokleby and B. Aazhang, “Lattice coding over the relay channel,”
in IEEE International Conference on Commun. (ICC), 2011, Jun.
2011, pp. 1-5.

[6] N. S. Ferdinand, M. Nokleby, and B. Aazhang, “Low-density lattice
codes for full-duplex relay channels,” IEEE Trans. on Wireless Com-
mun., vol. 14, no. 4, pp. 2309-2321, Apr. 2015.

[7]1 H. Khodaiemehr, D. Kiani, and M.-R. Sadeghi, “LDPC lattice codes
for full-duplex relay channels,” IEEE Trans. on Commun., vol. 65,
no. 2, pp. 536-548, Feb. 2017.

[8] ——, “One-level LDPC lattice codes for the relay channels,” in 2015
Iran Workshop on Commun. and Inf. Theory (IWCIT), May 2015, pp.
1-6.

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]
[32]

(33]

H. Khodaiemehr, M.-R. Sadeghi, and D. Panario, “Construction of
full-diversity 1-level LDPC lattices for block-fading channels,” in
2016 IEEE International Symposium on Inf. Theory (ISIT), Jul. 2016,
pp. 2714-2718.

M. O. Hasna and M.-S. Alouini, “End-to-end performance of trans-
mission systems with relays over Rayleigh-fading channels,” IEEE
Trans. Wireless Commun., vol. 2, no. 6, pp. 1126-1131, Nov. 2003.

L. J. Rodrguez, N. H. Tran, and T. Le-Ngoc, “Performance of full-
duplex AF relaying in the presence of residual self-interference,” IEEE
J. on Selected Areas in Commun., vol. 32, no. 9, pp. 1752-1764, Sept.
2014.

T. Riihonen, S. Werner, and R. Wichman, “Hybrid full-duplex/half-
duplex relaying with transmit power adaptation,” IEEE Trans. on
Wireless Commun., vol. 10, no. 9, pp. 3074-3085, Sept. 2011.

D. W. K. Ng, E. S. Lo, and R. Schober, “Dynamic resource allocation
in MIMO-OFDMA systems with full-duplex and hybrid relaying,”
IEEE Trans. on Commun., vol. 60, no. 5, pp. 1291-1304, May 2012.
E. da Silva, A. L. dos Santos, L. C. P. Albini, and M. N. Lima,
“Identity-based key management in mobile ad hoc networks: tech-
niques and applications,” IEEE Wireless Commun., vol. 15, no. 5, pp.
46-52, Oct. 2008.

Y. S. Shiu, S. Y. Chang, H. C. Wu, S. C. H. Huang, and H. H.
Chen, “Physical layer security in wireless networks: a tutorial,” I[EEE
Wireless Commun., vol. 18, no. 2, pp. 6674, Apr. 2011.

G. Chen, Y. Gong, P. Xiao, and J. A. Chambers, “Physical layer
network security in the full-duplex relay system,” IEEE Trans. on
Inf. Forensics and Security, vol. 10, no. 3, pp. 574-583, Mar. 2015.

C. Dang, L. J. Rodrguez, N. H. Tran, S. Shelly, and S. Sastry, “Secrecy
capacity of the full-duplex AF relay wire-tap channel under residual
self-interference,” in 2015 IEEE Wireless Commun. and Networking
Conference (WCNC), Mar. 2015, pp. 99-104.

L. Elsaid, M. Ranjbar, N. Raymondi, D. H. N. Nguyen, N. H. Tran,
and A. Mahamadi, “Full-duplex decode-and-forward relaying: Secrecy
rates and optimal power allocation,” in 2017 IEEE 85th Vehicular
Technology Conference (VIC Spring), Jun. 2017, pp. 1-6.

R. Zhang, L. Song, Z. Han, B. Jiao, and M. Debbah, “Physical layer
security for two way relay communications with friendly jammers,”
in 2010 IEEE Global Telecommunications Conference GLOBECOM
2010, Dec. 2010, pp. 1-6.

F. Oggier, P. Solé, and J. C. Belfiore, “Lattice codes for the wiretap
gaussian channel: Construction and analysis,” IEEE Trans. on Inf.
Theory, vol. 62, no. 10, pp. 5690-5708, Oct. 2016.

X. He and A. Yener, “Providing secrecy with lattice codes,” in 2008
46th Annual Allerton Conference on Communication, Control, and
Computing, Sept. 2008, pp. 1199-1206.

K. Bagheri, M.-R. Sadeghi, and T. Eghlidos, “An efficient public key
encryption scheme based on qc-mdpc lattices,” IEEE Access, vol. 5,
pp. 25527-25541, 2017.

K. Bagheri, M.-R. Sadeghi, and D. Panario, “A non-commutative
cryptosystem based on quaternion algebras,” Designs, Codes and
Cryptography, Dec. 2017. [Online]. Available: https://doi.org/10.
1007/s10623-017-0451-4

T. N. R. Rao and K. H. Nam, “A private-key algebraic-coded cryp-
tosystem,” Advances in Cryptology, Crypto’86, p. 3548, 1986.

K. Bagheri, M.-R. Sadeghi, T. Eghlidos, and D. Panario, “A secret
key encryption scheme based on 1-level QC-LDPC lattices,” in
2016 13th International Iranian Society of Cryptology Conference on
Information Security and Cryptology (ISCISC), Sept. 2016, pp. 20-25.
M. Aliasgari, M.-R. Sadeghi, and D. Panario, “Grobner bases for lat-
tices and an algebraic decoding algorithm,” IEEE Trans. on Commun.,
vol. 61, no. 4, pp. 1222-1230, Apr. 2013.

H. Khodaiemehr, M.-R. Sadeghi, and A. Sakzad, ‘“Practical encoder
and decoder for power constrained QC LDPC-lattice codes,” IEEE
Trans. on Commun., vol. 65, no. 2, pp. 486-500, Feb. 2017.

J. H. Conway and N. J. A. Sloane, Sphere Packing, Lattices and
Groups. New York: Springer, 1998.

H. Khodaiemehr and D. Kiani, “Construction and encoding of QC-
LDPC codes using group rings,” IEEE Trans. on Inf. Theory, vol. 63,
no. 4, pp. 2039-2060, Apr. 2017.

S. J. Johnson, Iterative Error Correction: Turbo, Low-Density Parity-
Check and Repeat-Accumulate Codes. Cambridge University Press,
2009.

N. Sommer, M. Feder, and O. Shalvi, “Low-density lattice codes,”
IEEE Trans. on Inf. Theory, vol. 54, no. 4, pp. 1561-1585, Apr. 2008.
T. Cover and A. El Gamal, “Capacity theorems for the relay channel,”
IEEE Trans. on Inf. Theory, vol. 25, no. 5, pp. 572-584, Sep. 1979.
Y. Yona and M. Feder, “Efficient parametric decoder of low density
lattice codes,” in IEEE International Symposium on Inf. Theory (ISIT),
2009, Jun. 2009, pp. 744-748.



