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Abstract—Nowadays, smartphones are ubiquitous sources 

of private and confidential information. Among smartphones 

operating systems, Android has become the most popular one 

in recent years. Android applications have access to different 

information which stored on the device so, may lead to 

information leaks accidentally or maliciously. Leakages stem 

from explicit or implicit information flows between 

information sources and sinks. Finding explicit flows is fairly 

simple whereas, implicit flows utilize more complicated 

structures and are more difficult to discover, as a result. Most 

existing tools ignore implicit flows or only consider special 

structures that are similar to explicit form in nature such as if 

and switch structures. In this paper we propose IIFDroid, 

inter-component information flow control static analysis tool 

which aims to detect information leaks generated by explicit 

and various forms of implicit flows within an Android 

application. Furthermore, we present test cases in order to 

examine the effectiveness of IIFDroid against implicit flows 

caused by more sophisticated structures like throw, 

polymorphism and exception-prone instructions. The 

experimental results on DroidBench and the developed test 

cases show that IIFDroid outperforms existing tools IccTA and 

JoDroid with 94.8% precision and 96.4% recall.  

Keywords—Android Applications, Privacy Leaks, 

Information Flow Control, Static Analysis, Inter-Component 

Communication 

I. INTRODUCTION  

Today, Android applications play a decisive role in our 
life. On average, each Android user installs 95 applications 
on her phone and uses 35 of them on a daily basis [1]. These 
apps have access to various sensitive information stored on 
the device such as contacts, gallery, IMEI and may send 
them to unwanted destinations without user consent or store 
insecurely on the device. Private information leakage is one 
of the mobile top ten risks reported by OWASP in 2016 [2]. 
Hence, some approaches are required to analyze 
application’s behavior more accurately.  

Based on the definition provided in [3], "privacy leaks 
are paths from sensitive data, called sources, to statements 
sending the data outside the application or device, called 
sinks". 

Leakages may happen inside a component or between 
different components from one/different app(s). Privacy 
leaks are due to explicit or implicit information flows 
between sources and sinks [4]. Tracking explicit flows is 
much simpler whereas, implicit flows are more sophisticated 
and are neglected by most existing tools.  

In this paper, we propose IIFDroid 1 , a precise Inter-
component Information Flow control static analysis tool for 
Android applications aiming at discovering privacy leaks 
within an app especially those that caused by implicit flows.  

At first, IIFDroid employs precise static analysis 
techniques to extract System Dependence Graph (SDG) of an 
Android app representing explicit and implicit information 
flows between program statements. Then, the backward 
slices of sinks are computed to check whether information 
with a higher security level reach sinks with lower security 
levels or not.  If so, a potential privacy leak will be reported.   

The rest of the paper is organized as follows, in Section II 
a brief background about Android app architecture, static 
analysis challenges and various kinds of information flows 
are given. Section III reviews existing work. In Section IV, 
IIFDroid workflow is given then information flow control 
analysis and IIFDroid architecture are explained. Section V 
includes implementation details, Section VI shows 
evaluation results and Section VII concludes the paper. 

II. BACKGROUND 

A. Android Application Architecture 

Android apps adhere to a component-based architecture  
[5]. There are four kinds of components: activity, service, 
content provider and broadcast receiver.  

Activities construct user interface of an app. Services do 
not have user interface and are used to perform time-
consuming tasks in the background. Content providers act 
analogous to a database and provide access to a constructed 
set of data. Broadcast receivers listen to global events e.g. 
battery is low. 
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Components in an app or across different apps, utilize so-
called inter-component communication (ICC) methods to 
communicate and exchange data. These methods take a 
message named Intent or URI2 (in case of content providers) 
as parameter. To handle ICC interactions, the target 
component and transferred data need to be resolved.  

Finally, every app consists a metadata file named 
AndroidManifest.xml that keeps essential information like 
permissions, components and action strings that each 
component can process. 

B. Static Analysis Challenges  

Although there are different ways for Android app 
development, IIFDroid only concentrates on those which are 
developed using standard Google API in Java programming 
language. 

Despite these apps are written in Java, they compile into 
dalvik bytecode. Retargeting tools like Dare [6] convert them 
into java bytecode and give as input to existing java static 
analysis frameworks. Nevertheless, there are fundamental 
differences between Java and Android that make precise 
modeling of Android app’s runtime behavior more 
challenging.  

Apps contain different components with a distinct 
lifecycle [4]. They do not have a main method rather 
Android runtime invokes various callback methods within 
the app based on system events to start, pause, resume and 
shutdown the app.  

Furthermore, static analysis tools must regard system and 
UI callbacks. Sometimes, UI contains sensitive information 
sources like password fields. API calls which return their 
content are not in the program code [7]. So, precise modeling 
of metadata and layout xml files is also required.  

To be precise, static analysis techniques must support 
analysis sensitivities [8].  Flow sensitivity is the most 
common one which takes the order of program statements 
into account. Object sensitive and field sensitive static 
analysis model each instance object of a class and each field 
of an object individually. Eventually, in context sensitive 
static analysis, each method call is modeled independently. 

C. Information Flow Types 

As mentioned earlier, leakages are due to information 
flows between information sources and sinks which Android 
app has access to. There are two types of information flows: 
explicit and implicit. Explicit flows caused by data 
dependency i.e. def-use relationship between program 
variables. On the contrary side, implicit flows are the result 
of control dependency between program statements [4]. For 
instance, in Fig. 1-a, line 2 defines variable x which is used 
in line 3. So, there is a data dependence between them, 
whereas, in Fig. 1-b, x controls the execution of assignment 
in line 5 and there is an implicit flow from x to y. 

You et al. [9] studied Android bytecode comprehensively 
to identify all possible forms of implicit flows. They applied 
control-transfer-oriented semantic analysis on Android 
bytecode and found 54 dalvik instructions that can induce 
implicit flow. Finally, all founded instructions were 
categorized into five classes based on their underlying 
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structure: if-based, switch-based, throw-based, exception-
prone-based and polymorphism-based. They presented 
proof-of-concepts for each identified category to examine 
their exploitability. An overview of proof-of-concepts is 
shown in Fig. 2, each one consists of a 1-1 mapping between 
private and public data. 

 

1. void explicitFlow() {

2. int x = source ;

3.  int y = 2 * x ;  

4. sink (y) ; 

5. }

1. void implicitFlow() {

2. int x = source ;

3.  if (x < max) 

4. {

5. int y = 2 * x ;

6. sink (y) ; 

7. }

8. } (b)(a)

Fig.  1. Implicit vs. explicit flow 

 

 

1. if (high== 0 ) low = 0 ;

2. else if (high== 1 ) low = 1 ;  

1. switch (high) {

2.  case  0 : low =  0  ; break ; 

3.  case  1 : low =  1  ; break ; 

4. }

1. for (low =  0 ; low <=  9  ; low++) {

2.  try { int tmp = 1 / (high- low); } 

3.  catch (Exception e) { break ; }

4. } 

1. Exception except = excepts[high- 0 ]; 

2. try { throw except ; }

3. catch (Exception_0 e) {low =  0  ; }

4. catch (Exception_1 e) {low =  1  ; }

1. Class Poly_0 extends Poly { 

2. char f() {return  0 ;}

3.  

4. Poly poly = polys [high -  0 ]; 

5. Low = poly.f() ; 

(a) (b)

(c) (d)

(e)

Fig.  2. Implicit information flow forms in Android bytecode [9] 

 

III. RELATED WORK 

Although privacy leak is the most covered vulnerability 
among Android static analysis tools, only few studies have 
noticed implicit flows [4].  

FlowDroid [7] models component’s lifecycle by creating 
a dummy main method and performs context, flow, field and 
object-sensitive taint analysis to discover leakages within a 
component precisely. Later, authors enhanced taint analysis 
technique to detect leaks created by simple implicit flow 
structures like if and switch. FlowDroid does not model ICC 
communications and overapproximated inter-component 
communications by taking each transferred data element as a 
taint.  

IccTA [3] adds a preprocessing step to FlowDroid in 
order to discover inter-component leaks. It uses IC3 [10] to 
build ICC links between different components. Then, it 
instruments the app to connect components directly and 
builds an Inter-procedural Control Flow Graph (ICFG) of the 
whole Android app. At the end, it utilizes an enhanced 
version of FlowDroid to perform inter-component taint 
analysis. So, it is similar to FlowDroid in case of implicit 
flows.  

Joana [11] is a static information flow control analysis 
tool for Java programs that aims to discover all security leaks 
caused by explicit or various forms of implicit flows. Later in 
2013 JoDroid [12], an Android front-end for Joana has been 
proposed to discover all types of information leaks in 
Android apps. Despite its goal, JoDroid runs into many 
troubles in practice. It not only does not handle Android-
specific challenges such as precise lifecycle modeling but 



also it is unable to recognize information sources and sinks 
within an app accurately.    

IV. OUR APPROACH 

A. Proposed Method  

The purpose of IIFDroid is discovering information leaks 
caused by explicit and five-fold forms of implicit flows in 
one component or between different components within an 
Android app. To achieve this goal, IIFDroid adopts inter-
component information flow control static analysis.  

The general workflow of IIFDroid is depicted in Fig. 3. 
IIFDroid takes an Android app as input and outputs all 
founded potential information leaks. It begins with 
converting the app to an intermediate representation which is 
suitable for future analysis. Then, it generates SDG of the 
program (step 2) and annotates sources and sinks with 
appropriate security levels (step 3).  

 

1- Intermediate 

Representation 

Generation

2- SDG 

Construction

3- SDG 

Augmentation
4- IFC Analysis

Potential 

Information Leaks

 

Fig.  3. General overview of IIFDroid process 

 

Finally, information flow control analysis is performed in 
step 4. Backward slice of sinks is calculated to check 
whether it contains an information source with a higher or 
non-comparable security level or not. Consequently, all 
founded leaks are reported to the security analyst.  

B. Information Flow Control Analysis 

Information flow control (IFC) [11] is a known program 
analysis technique for discovering security leaks in software. 
Language-based IFC analysis aims to establish 
noninterfernce.  It takes program code (in source code or 
bytecode) as input and checks whether it obeys 
confidentiality and/or integrity.   

Our IFC analysis technique uses SDG as the fundamental 
structure. SDG is a standard data structure for modeling 
information flows through a program. It includes Program 
Dependency Graph (PDG) for each procedure of program 
connected by the call, return and parameter passing edges. 

SDG Nodes are program statements and predicates 
connected by two types of edges: data-dependence which 
models def-use relationship between variables, control-
dependence that represents control dependency between 
nodes. We will explain IFC analysis technique in PDG. All 
notions are the same as SDG. However, function call and 
return relationship must be handled properly in SDG and 
only so-called realizable paths should be taken into 
consideration. Interested readers can refer to [11], [13] for 
more information about SDG and slicing.  

In a PDG G = (N, →), backward slice3 of x consists all 
nodes possibly influencing x and is computed as: 

 

                                                           
3 Backward slices in SDG are calculated using a so-called HRB-slicing 

[13]- a context-sensitive slicing algorithm- that handles function calls 
properly.  

      (1)  

 

forward slice of x includes all nodes influenced by x:  

 

         (2) 

 
Noninterference needs more information about security 

level of program statements. Thus, PDG is augmented by a 
security level lattice. In practice, it is sufficient to specify 
security level of input i.e. sources and output i.e. sinks 
statements. Sources and sinks are annotated by a so-called 
"provided security level" and "required security level" 
respectively. Provided security level P(x) means that x sends 
information with the provided security level or higher. 
Required security level R(x) specifies that information with 
smaller or equal security level can reach statement x.  

 

Theorem 1 [11]: if 

 
then confidentiality is maintained for all  (dom(P) and 

dom(R) represent set of sources and sinks respectively).   

 
Based on theorem 1, information with a higher security 

level should never reach a sink with lower or non-
comparable security level. Otherwise, a potential privacy 

leak is revealed ( ). In this case, all responsible 
nodes are denoted by a so-called chop and are computed as 
follows: 

   

  
 

C. IIFDroid Architecture 

Fig. 4 presents a more detailed view of IIFDroid 
architecture. Initially, Android app is converted into Jimple 
bytecode via Dexpler [14]. Jimple is the main intermediate 
representation of Soot framework [15] which is appropriate 
for some specific analyses such as, points-to analysis, call 
graph and control flow graph construction (step 1-a). 

To uncover privacy leaks between components, we need 
to consider inter-component communication. Accordingly, 
we leverage IC3 and IccTA in combination. IC3 takes Jimple 
representation as input and extracts all information about 
ICC methods like intents, URIs, intent-filters and target 
components. Besides, it stores all gathered information in a 
mySQL database (step 2-a).   

In step 3-a, IccTA reads the database to build ICC links. 
Accordingly, IccTA instruments Jimple representation, 
connect components directly and obtains one component 
encompasses all components of the app. Additional analyses 
take place in this step. UI callbacks are collected through 
analyzing layout xml files. IIFDroid uses sources and sinks 
lists provided by SuSi tool [16] to find information sources 
and sinks in app. All application’s potential entry points are 
extracted and used to construct a dummy main method as a 
unique entry point. This unique entry point is adopted to 
construct call graph of the app. At the end, ICFG of the app 
is constructed that shows how control transfers between 
different methods.  

IIFDroid takes ICFG as input, build PDG of each 
procedure and connect them based on call and return 



relationship in ICFG to construct SDG of whole Android 
application (step 4-a). Then, it annotates SDG by provided 
security level of sources and required security level of sinks 
(step 4-b). It acts based on theorem 1, traverses SDG and 
calculates backward slice of sinks in a context-sensitive way 
to detect potential privacy leaks (step 4-c). 

ICC Links 

Extraction
ICC 

DB

Jimple

 + Jimple Instrumentatation

 + Callbacks

 + Sources/Sinks

 + Entry Points

 + Dummy Main Method

 + Call Graph

ICFG

SDG 

Augmentation

IFC Analysis

PDG, SDG 

Extraction

Potential Data 

Leaks

3-a

1-a

2-a

4-a

4-b

4-c

Jimple Code

ICC Links

ICFG

 

Fig.  4. An overview of IIFDroid Architecture 

 

V. IMPLEMENTATION  

IIFDroid extends Soot as its core framework. Soot is a 
Java static analysis framework which provides different 
intermediate representations, precise call graph and a raw 
PDG construction algorithm.  

Jimple [15] is the base intermediate representation of 
Soot which IIFDroid uses. It is a typed, stackless, 3-address 
statement based intermediate representation that comprises 
only 15 instruction and is much simpler than Java and 
Android bytecode.  

For precise modeling of app’s lifecycle, IIFDroid acts 
like FlowDroid and IccTA by creating a dummy main 
method which emulates a unique entry point. The dummy 
main is taken as input by Spark, a precise call graph 
construction algorithm in Soot to build call graph of Android 
app. Afterwards, ICFG is constructed by IccTA and is given 
to IIFDroid as input.  

IIFDroid starts with traversing ICFG and building PDG 
of each method encounters. The provided PDG in Soot is 
block-based and only contains control dependency between 
procedure’s basic blocks. IIFDroid extends PDG 
construction process in 2 ways: (1) Constructs PDG with 
Jimple instructions granularity, (2) Adds flow-sensitive data 
dependence relationships between instructions.  

Consider the code snippet in Fig. 5 that shows 
MainActivity class of DirectLeak1 test case in DroidBench. 
It reads IMEI in line. 10 and sends it via SMS.    

We provided it as input to IIFDroid. The generated PDG 
is depicted in Fig. 6. IIFDroid annotated getDeviceId() with 
high as an information source and sendTextMessage() with 
low as a sink. It contains a path from sensitive source to a 
sink, transmitting information to outside the device. Thus, a 
security leak is reported.   

1. public class MainActivity extends Activity {

2. @Override

3. 

4. protected void onCreate(Bundle savedInstanceState){

5.   super.onCreate(savedInstanceState);

6.   setContentView(R.layout.activity_main);

7.   TelephonyManager mgr; 

8.   mgr = (TelephonyManager)this.getSystemService(TELEPHONY_SERVICE);

9.   SmsManager sms = SmsManager.getDefault(); 

10.  sms.sendTextMessage( +49 1234 , null, mgr.getDeviceId(), null, null);

11. } 

12.}

 
Fig.  5: Direct Leak1 

 

 
Entry

Region  0

$r1:=@parameter0:android.os.Bundle

specialInvoke $r0.<android.app.activity: 

void onCreate(android.os.Bundle)>($r1)

$r0:=@this:de.ecspride.MainActivity

virtualInvoke $r0.<de.ecspride.MainActivity: void 

setContentView(int)>(2130903040)

$r2=virtualInvoke $r0.<de.ecspride.MainActivity:java.lang.Object 

getSystemService(java.lang.String)>( phone )

$r4=staticInvoke<androi.telephony.SmsManager: 

android.telephony.SmsManager getDefault()>()
$r3=(android.telephony.TelephonyManager)$r2

$r5=virtualInvoke $r3.<android.telephony.TelephonyManager: 

java.lang.String getDevideId()>()

virtualInvoke $r4.<android.telephony.SmsManager:void sendTextMessage 

(java.lang.String,android.app.PendingIntent,android.app.PendingIntent)>

( +491234 ,null,$r5,null,null)

return

P=High

R=Low

 
Fig.  6. PDG of DirectLeak1 

 

VI. EVALUATION 

We evaluated and compared IIFDroid with FlowDroid, 
IccTA and JoDroid on DroidBench and the developed test 
cases4 to test for ICC and implicit flow leaks. The results are 
shown in Table I. 

DroidBench [17] is an Android-specific test suite 
containing apps with known leaks which covers Android-
specific aspects like callbacks, interactions with UI elements 
such as password fields, component’s lifecycle, inter-
component communications and Java-specific challenges 
like lists, arrays, reflection and static fields. 

Additionally, there are some implicit flow test cases in 
DroidBench that only make use of if and switch structures. 
Thus, we have designed three test cases which leak IMEI 
using more complicated structures namely exception, 
polymorphism and throw like Fig. 2-b,d,e. They are specified 
with IIF-exception, IIF-Polymorphism and IIF-Throw in 
Table I.  

Table II compares each tool characteristics and 
capabilities. For precise modeling of components lifecycle, 
four items have been defined. According to our findings, 
JoDroid only models Activity lifecycle properly. Moreover, 
it does not analyze layout xml files and is not capable of 
tracking UI information sources such as password fields.  

FlowDroid overapproximates ICC communication and 
generates many false alarms. FlowDroid and IccTA are 
unable to discover implicit flows in sophisticated structures. 
Although JoDroid has been designed to guarantee 
noninterference in Android apps, it runs into many troubles 
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in practice. It does not even find information sources and 
sinks properly within an Android app. 

TABLE I.  EVALUATION RESULTS 
 = CORRECT WARNING,  = FALSE WARNING,  = MISSED LEAK 

MULTIPLE SYMBOLS IN ONE ROW: MULTIPLE LEAKS EXPECTED 
ALL EMPTY ROW: NO LEAKS EXPECTED, NON REPORTED 

Test Case FlowDroid IccTA JoDroid IIFDroid 

DirectLeak1     
InativeActivity        
LogNoLeak         
PrivateDataLeak1     
PrivateDataLeak2     
ArrayAccess1      

ArrayAccess2       

ListAccess1       

AnonymousClass1     
Button1     

Button2 



  

LocationLeak1     
LocationLeak2     
MethodOverride1     
FieldSensitivity1         

FieldSensitivity2         

FieldSensitivity3     
FieldSensitivity4         

ObjectSensitivity1         

ObjectSensitivity2         

Loop1     
Loop2     
SourceCodeSpecific1     
StartProcessWithSecr

et1 
    

StaticInitialization1     
UnreachableCode        

ActivityLifeCycle1     
ActivityLifeCycle2     
ActivityLifeCycle3     
ActivityLifeCycle4     
BroadcastReceiver-

Lifecycle1 
    

ServiceLifecycle1     
Reflection1     
Reflection2     
Reflection3     
startActivity1     

startActivity2 



   

startActivity3  (32)    
startActivity4        

startActivity5        

startActivity6        

startActivity7      
startActivityForResul

t1 
    

startActivityForResul

t2 
    

startActivityForResul
t3 

    

startActivityForResul

t4 
    

startService1     
startService2     
bindService1     
bindService2     
bindService3     
bindService4     
sendBroadcast1     
insert1     
delete1     
update1     
query1     
Merge1      

ImplicitFlow1     
ImplicitFlow2     
ImplicitFlow3     
ImplicitFlow4     
IIF-Exception     
IIF-Throw     
IIF-Polymorphism     

Analysis Results 

Precision (/(+)) 44.6% 89.6% 58.3% 94.8% 

Recall (/(+))  80.7% 91.2% 12.2% 96.4% 

F-measure  0.57 0.9 0.2 0.95 

 

All tools adopt flow and context-sensitive static analysis 
to uncover potential privacy leaks precisely. Finally, they are 
developed as an extension to existing Java static analysis 
frameworks, Soot and WALA.  

 
TABLE II.  TOOLS COMPARISON 

 = FULL SUPPORT, = LIMITED SUPPORT, =NO SUPPORT 

Criteria FlowDroid IccTA JoDroid IIFDroid 

Activities     
Services     
Content Providers     
Broadcast receivers     
UI Elements      
Inter-Component 
Communication 

    

Implicit flows     
Precise detection of 

sources and sinks 
    

Flow and Context 

Sensitivity 
    

Underlying 

Framework 
Soot Soot WALA Soot 

 

CONCLUSIONS 

In this paper, we have presented IIFDroid, a flow, 
context, object and field sensitive information flow control 
static analysis tool for Android apps which is able to uncover 
privacy leaks induced by explicit or different forms of 
implicit flows in an Andriod app. Our empirical findings 
show that it outperforms existing tools FlowDroid, IccTA 
and JoDroid with 94.8% precision and 96.4% recall. 

Like existing tools, IIFDroid is unable to address static 
analysis challenges such as dynamic code loading, reflective 
call, native code and multithreading.   

Privacy leaks are caused by different factors include extra 
app’s permissions, advertisement libraries or developer 
mistakes. Nonetheless, IIFDroid only makes attempt to 
reveal potential privacy leaks in the most precise way. It does 
not look for the reason. All founded leaks are reported to the 
security analyst who can reason about them based upon 
auxiliary information such as app’s permissions and 
functionalities.   

 Sometimes, Android apps co-operate to leak sensitive 
information. IIFDroid neglects inter-app communication and 
only models ICC within an application.  
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