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Abstract—This paper presents effective encrypted fingerprint
authentication based on outsourced correlation filter com-
putation. The privacy of fingerprint data raises important
concerns at untrusted servers. In this work, we propose
a framework for privacy preserving fingerprint authentica-
tion in untrusted server with outsourcing computation. The
privacy of fingerprint authentication is preserved by three
state. Firstly, all training images are encrypted. Secondly,
all correlation filter computation and verification stage is
performed over encrypted fingerprint images in server side.
Thirdly, Privacy of the fingerprint authentication result is
preserved by sending it to the client. We prove that our
scheme is secure in untrusted server and has high accuracy.
We show evaluations of our method on a standard fingerprint
database FVC2002 to demonstrate its reliability.

Index Terms—Fingerprint Authentication, Untrusted Server,
Privacy Preserving.

1. Introduction

Fingerprint techniques have advanced over the past
years to a reliable means of authentication, which have
been deployed in various application domains. The
widespread use of fingerprint authentication systems, how-
ever, it will bring privacy risks because biometric infor-
mation can be collected and misused to profile and track
against their will. These issues raise the desire to construct
privacy-preserving fingerprint authentication systems [1].

Cloud computing is the delivery of computing services
over the Internet [5]. It has attractive features such as
unlimited storage, high processing capabilities, and low
cost. These properties create a new computing model and
motivate clients to outsource their computation to cloud
[9]. However, clients have no control over outsourced data
and will not realize what is being derived from their data.
So, security and privacy of sensitive data being handled
by the cloud become an important issue. The problem
of privacy–preserving fingerprint authentication has been
studied for decades and numerous techniques have been
proposed [2], [6].

In this paper, privacy of input data, verification model,
and verified output are preserved. Correlation filters are
generated from encrypted training images in the server
side. Outsourcing correlation filter computation to a cloud
server reduces computation cost of the client. To protect
the output, encrypted verified results are sent back to client
for decryption and comparison with a predefined threshold
for verification.

The remainder of this paper is organized as follows.
Section 2 explains background studies to designing the
proposed method. Section 3 gives the details of the pro-
posed method step by step. Experimental results on fin-
gerprint database is given in section 4 and finally section
5 draws the conclusions.

2. Background Study

Encrypted fingerprint authentication at untrusted
server is presented in this paper. For privacy preserving, all
computation including generation CFs, cross- correlation ,
Peak to sidelobe ratio (PSR) measurement are performed
in encrypted domain. To do this, linear and nonlinear oper-
ations should be transformed to the encrypted domain by
additively homomorphic encryption properties and secure
algorithm.

2.1. Correlation Filter

Correlation filters have ability to handle some recog-
nition tasks, good speed and scaling. One of the important
class of correlation filters is the use of biometric recogni-
tion such as fingerprint images for person verification. CF
has a good mathematical foundation with low computa-
tional time. It has a greater robustness and higher accuracy
compared to traditional appearance based methods.

Unconstrained minimum average correlation energy
filter (UMACE) is made of linear combination of training
samples. The peak value in UMACE filter is free to
increase according to the input data by maximizing the
square of the average magnitude of the peak. Response
of correlation filter to Fourier transformed of ith image
Xi(i = 1, ...,K) is represented by gi = X∗i H , where
diagonal matrix Xi contains Fourier transformed of ith
image and H represents the correlation filter. Energy
of the ith correlation output is Ei = 1

dg
†
i gi, where

d, (d = d1 × d2), is the dimension of gi and 1
d is used

for normalization. Since all Ei{i = 1, . . . ,K} cannot be
simultaneously minimized, the average correlation energy
(ACE) is minimized instead. The ACE can be expressed
as follows.
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ACE = (
1

K × d
)

K∑
i=1

d1∑
u=1

d2∑
v=1

|Hi(u, v)|2|Xi(u, v)|2

= (
1

K × d
)

K∑
i=1

(H†Xi)(X
†
iH)

= H†[(
1

K × d
)

K∑
i=1

XiX
†
i ]H

= H†DH (1)

Where † shows the transpose. Diagonal matrix Di =
XiX

†
i contains the power spectrum of ith image, and

D = ( 1
K )
∑K

i=1Di .Diagonal matrix D contains the
average power spectral density of the training images. The
average peak intensity can be expressed as:

|H†m|2 = H†mm†H (2)

If we consider m = ( 1
K×d )

∑K
i=1Xi as the average of

training images, CF maximizes |H†m|2 and minimizing
H†DH , hence, the objective function is given by

J(H) = (H†mm†H)/(H†DH) (3)

This leads to the closed-form solution for CF H .

H = D−1m (4)

Computation of H is trivial as D is a diagonal matrix
constructed by averaging the power spectra of training
fingerprint images.

2.2. Paillier Cryptosystem

The Paillier cryptosystem is an additively homomor-
phic public-key encryption scheme. By homomorphic en-
cryption, server can perform some computations on en-
crypted data while user’s privacy are preserved [7].

The operations of the Paillier cryptosystem can briefly
be described in three parts:

1) Key Generation: Two large prime numbers p
and q randomly and independently are chosen,
such that greatest common divisors (gcd) be-
tween them is one. We also select N = pq and
gcd(L(gλmod N2), N) = 1, where λ that is the
private key, defined as λ = lcm(p − 1, q − 1) .
The pair of N and g defines the public keys.

2) Encryption: The ciphertext (corresponding to m)
∈ ZN2 is derived as:

c = E(m, r) = gmrN mod N2 (5)

Where r ∈ Z∗N is the uniformly chosen key and
is not fixed.

3) Decryption: For decrypting the ciphertext c, the
private key λ is used and the plaintext m is
obtained as:

m = D(c, λ) =
L(cλ mod N2)

L(gλ mod N2)
mod N (6)

where L(u) = u−1
N .

Because of these three properties, the Paillier cryptosys-
tem is said to be homomorphically additive:

After decrypting the Eq. 7 and Eq. 8, m1+m2 can be
get. Means, the Paillier cryptosystem provides plaintext
addition.

c1 × c2 = E(m1, r1)× E(m2, r2)

= g(m1+m2)(r1r2)
N mod N2. (7)

c1 × gm2 = E(m1, r1)× gm2

= g(m1+m2)(r1)
Nmod N2 (8)

The Paillier cryptosystem provides plaintext multiplica-
tion.

D([E(m1, r1)]
m2 mod N2) = (m1 ×m2) mod N. (9)

2.3. SecureOperation

Multiplication algorithm: Multiplication can be ex-
ecuted without revealing any information. Suppose that
c1 and c2 are two numbers in ciphertext domain, where
c1 = E(m1) and c2 = E(m2) in which E(.) denotes
Paillier cryptosystem. We try to obtain a number c3 in
ciphertext domain, which satisfy D(c3) = m1 × m2.
Where D(.) denotes Paillier decryption.

Division algorithm: For dividing encrypted data
in the semi-honest mode, we assume that the divisor is
known for client and server. c1 and c2 are two numbers
in ciphertext domain, where c1 = E(m1), c2 = E(m2).
We try to obtain a number c3 in encrypted domain, in
which D(c3) = (m1

m2
).

Fast Fourier Transform (Secure-FFT): Discrete
Fourier transform (DFT) can be performed in the en-
crypted domain, by using the homomorphic properties.
It is called as secure-FFT in proposed method [10]. The
DFT and inverse DFT of a one dimensional real value
signal x(m) is defined as:

X(k) =

M−1∑
m=0

x(m)Wmk, k = 0, 1, 2, 3, ...,M − 1

x(m) =
1

M

M−1∑
k=0

X(k)W−mk, m = 0, 1, 2, 3, ...,M − 1

(10)

Where W = e−j2π/M and x(m) is a finite duration
sequence with length M . In order to process Wmk in the
encrypted domain, it must be approximated by suitable
integers as:

C(u) = dQ2W
uc = dQ2(WR + jWI)c

= dQ2cos(2πu/M)c+ jdQ2sin(2πu/M)c = CR + jCI
(11)

Where d.c is the rounding function and Q2 is a suitable
DFT coefficient scaling factor. Based on the above defini-



tion, the integer approximation of the DFT and IDFT
are defined as:

DFT : X(k) =

M−1∑
m=0

C(mk)x(m)

=

M−1∑
m=0

[x(m)CR(mk) + jx(m)CI(mk)],

k = 0, 1, 2, 3, ...,M − 1

IDFT : x(m) =

M−1∑
k=0

[
(
XR(k)CR(mk)−XI(k)CI(mk)

)
+ j
(
XR(k)CI(mk) +XI(k)CR(mk)

)
],

m = 0, 1, 2, 3, ...,M − 1 (12)

Since the above equation requires only integer multipli-
cations and integer additions, they can be executed in the
encrypted domain by relying on homomorphic properties.
In the following, we will consider the encryption of s(n)
as the separate encryption of both sR(n) and sI(n):
E[X(m)] = {E[xR(m)], E[xI(m)]}. We assume that x
is a real-valued signal. So, the secure DFT (SDFT) and
secure IDFT (SIDFT) can be computed as:

E[X(k)] =

M−1∏
m=0

E[x(m)CR(mk) + jx(m)CI(mk)]

(13)

= {
M−1∏
m=0

E[x(m)]CR(mk),

M−1∏
m=0

E[x(m)]CI(mk)},

k = 0, 1, 2, 3, ...,M − 1

E[x(m)] =

M−1∏
m=0

E[
(
XR(k)CR(mk)−XI(k)CI(mk)

)
+ j
(
XR(k)CI(mk) +XI(k)CR(mk)

)
]

= {
M−1∏
m=0

E[XR(k)]
CR(mk)E[XI(k)]

−CI(mk)

,

M−1∏
m=0

E[XR(k)]
CI(mk)E[XI(k)]

CR(mk)},

m = 0, 1, 2, 3, ...,M − 1 (14)

3. Privacy-preserving fingerprint authentica-
tion at untrusted server

In this section, we describe the proposed method. This
method is conducted based on Paillier cryptosystem. In
order to make use of servers computational power, all
processing of designing CFs and verification are done in
server side by exploiting the properties of homomorphic
encryption and the two-party computation process. This
method is done without leaking any information about the
original images. Fig.1 illustrates parameters transmision
between the client and server in our method. Details of
modification in both client and server stages are carried
out in the following four steps and shown in Fig.2. They
will be explained in details later.

1) M encrypted training images that are chosen ran-
domly from each of C classes in client side are
stored in the database in the server side.

2) Encrypted CF is designed from M encrypted
training images by the server.

3) Secure cross-correlation between encrypted test
and encrypted CF is computed in encrypted do-
main by the server.

4) To measure similarity between encrypted test
image and encrypted CF, PSR measurement is
applied on correlation output plain in encrypted
domain.

5) Comparison between decrypted PSR result and
PSR threshold is done in client side to decide
whether the encrypted test image is authentic or
imposter.

Encrypted Correlation Filter: Firstly, encrypted CF is
built by server from encrypted training images (E(si)) in
the server side. Corresponding encrypted CF (E(H)) for
each classes is designed according to Eq.4 and Fig.2.

Secure Cross-Correlation: Secure cross-correlation
in encrypted domain is executed between encrypted cor-
relation filter (E(H)) and encrypted test image (E(t)).
This operation is performed with secure multiplication
and Paillier cryptosystem properties. Cross-correlation in
Plaintext frequency domain is defined as:

C = T ∗H = (TR − jTI)(HR + jHI)

= (TRHR + TIHI) + j(−TIHR + TRHI) (15)

where T and H are Fourier transform of the t and h
and ”*” refer to conjugate operation. Cross-correlation in
encrypted domain is defined as:

E(C) = E
(
(TRHR + TIHI) + j(−TIHR + TRHI)

)
= [E(TRHR)E(TIHI)] + j[E(−TIHR)E(TRHI)]

(16)

where E[.] denotes the Paillier cryptosystem, as
indicated in Eq.5. With real and imaginary part of
E(T)

(
secure-FFT(E(t))

)
and E(H)

(
secure-FFT(E(h))

)
and four secure multiplicative, we can calculate Eq. 16 in
encrypted frequency domain. Finally, to transform cross-
correlation from encrypted frequency domain to encrypted
domain, secure-IFFT must be performed.

Secure PSR measurement : To discriminate authentic
from impostor images, the peak of output correlation plain
is measured by peak-to-sidelobe ratio (PSR) criterion.
The definition of PSR in plain domain is:

PSR =
peak

mean
(17)

The peak parameter is the largest value in the correlation
output between the filter and test image. The mean is
obtained from the sidelobe region around the peak. Fig.
3 illustrates PSR computation in small windows with
W1 = 5 and W2 = 20. According to Eq.3, to compute
PSR in encrypted domain, server must have the encrypted
peak and encrypted mean of the sidelobe region around
the peak. Correlation output plane in encrypted domain
is encrypted form of correlation output plane in plaintext
domain, so encrypted peak is located at the center of that.



Figure 1. Parameter communication between client and server in proposed method.

Figure 2. Schematic of the proposed secure fingerprint authentication.

Figure 3. Illustration of peak to sidelobe ratio (PSR) computation.

To obtain encrypted mean value, a sidelobe region around
the encrypted peak is considered and it is calculated as
follows:

E(mean) = E(
∑
x,y

csidelobe(x, y)/M)

= [
∏
x,y

E(csidelobe(x, y))]
1/Mmod N2 (18)

Where csidelobe is the sidelobe region around the peak
according to the Fig.3, and M is the size of csidelobe. We

use division algorithm that is described in section 2.3, to
calculate PSR (Eq.3) in encrypted domain as:

E(PSR) = E(
peak

mean
)

4. Experimental Results

Privacy preserving correlation filter for fingerprint
authentication is evaluated in this section. First, finger-
print dataset is introduced. Then, biometric information
protection requirements are examined in the proposed
method. These parameters include authentication accuracy
and complexity.

4.1. Database

FVC2002 has four different databases (DB1, DB2,
DB3 and DB4) were collected by different sensors. In
this paper, a standard fingerprint database FVC2002-DB1
is used. It should be noted that all of the images are
normalized to have the same size of 64 × 64. Sample
fingerprint images are shown in Fig.4.



Figure 4. Fingerprint images of FVC2002-DB1.
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Figure 5. PSNR between decrypted secure FFT and FFT in plain domain
vis different scaling factor.

4.2. Optimum scaling factors

For the sake of simplicity we will assume Q2 is powers
of two, ( Q2 = 2n2). Finally, we will indicate the bit
length of the modulus used by Paillier as nP = dlog2Nc.
For security reasons, usually requires nP > 1000. FFT
coefficient scaling factor (Q2) in Eq.11 effects on FFT
precision in encrypted domain. The larger Q2, the smaller
quantization effects on FFT output. Fig.5 shows peak
signal-to-noise ratio (PSNR) between decrypted secure
FFT (DF) and FFT in plain domain (OF) against various
values of the Q2. It can be observed that, when Q2 is
216 the decrypted secure FFT is equal to FFT in plain
domain. So, scaling factor is set to 216. The PSNR (in
dB) is defined as:

PSNR = 10∗log10
MAX2

OF
1

m∗n
∑m−1

i=0

∑n−1
j=0 [OF (i, j)−DF (i, j)]2

4.3. Optimum PSR threshold value

To verify an input image, its PSR value is calculated.
If this value is larger than a predefined threshold, then it is
considered as authenticated person. Otherwise it belongs
to imposter category. PSR value is critical hyperparameter
that determines the performance of the authentication
system. To determine the optimum value of the PSR
threshold, false accept rate ( FAR) versus false reject rate (
FRR) for all persons in each database when PSR threshold
(Thr) varies is plotted. The point where both FAR and
FRR are equal to zero represents the optimum value. As
Fig.6 shows optimum PSR threshold is 20 for database.
The definition of FAR and FRR are as follow:

FAR =
number of imposter image with PSR > Thr

total number of imposter images
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Figure 6. FAR and FRR versus PSR threshold plot
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Figure 7. ROC in FVC2002 database.

FRR =
number of authentic image with PSR < Thr

total number of authentic images

4.4. Accuracy evaluation

Biometric template protection schemes should pre-
serve the verification performance similar to plaintext
scheme. In this section, we evaluate the performance of the
proposed scheme for fingerprint authentication. For gener-
ating correlation filter in plaintext and protected schemes,
5 training images of each subject in each database were
selected. The remaining fingerprint images were used
as test samples. The receiver operating curve (ROC) is
depicted in Fig.7 on fingerprint databases for the plaintext
and protected schemes. The x-axis denotes the FAR results
and the y-axis is the FRR. It can be seen that the proposed
method results are comparable with plaintext results and
transforming correlation filter in to encrypted domain does
not degrade the performance of fingerprint verification.
According to Fig.7, small difference between these meth-
ods due to the fact that the Paillier cryptosystem can only
operate in the integer domain. Table1 shows recognition
between the proposed method and other privacy preserv-
ing fingerprint method.



TABLE 1. COMPARISON OF ACCURACY EVALUATION.

Ref Database Accuracy
Proposed method FVC2002 98.5%(RR)

[11] FVC2002 90.4%(RR)
[4] UPEK 1.39%(EER)
[3] FVC2002 6%(EER)
[8] FVC2002 8.68%(EER)

(a) (b)

Figure 8. Result of point spread function (PSF) attack. (a) Filter obtained
from plain images. (b) Filter obtained from encrypted images.

4.5. Security analysis

The security of our algorithm is based on the security
of homomorphic encryption and correlation filter schemes.
Homomorphic encryption is secure which has been proved
in [7]. Thus, our system is secure. Correlation filter that
is designed by original training images in plain domain is
not robusted against point spread function (PSF) attack.
It reveals their private training sets. Fig. 8 (a) shows this
fact. However, facial features in the result of PSF attack
on CF obtained from encrypted images are unrecognizable
(Fig.8 (b)).

5. Conclusions

In this paper, we present a encrypted fingerprint au-
thentication scheme at untrusted server. Privacy of finger-
print images are preserved in three states: privacy of the
input images, privacy of the computation, and privacy of
the authentication result. Our method allows the client to
securely outsource some computation task to an untrusted
server by encrypting all information, either stored in the
database or exchanged between the client and the server.
Furthermore, the client can verify the correctness of the
authentication result. Experiments on FVC2002 database
showed that authentication can be carried out in the en-
crypted domain with no degradation in its performance.
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