
2018 15th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC)

August 28-29, 2018; Shahid Rajaee Teacher Training University - Tehran, Iran

978-1-5386-7582-3/18/$31.00 ©2018 IEEE

Detecting Privacy Leaks in Android Apps using

Inter-Component Information Flow Control

Analysis

Zohreh Bohluli

Department of Computer Eng. and IT

Amirkabir University of Technology
Tehran, Iran

z.bohluli@aut.ac.ir

Hamid Reza Shahriari

Department of Computer Eng. and IT

Amirkabir University of Technology

Tehran, Iran

shahriari@aut.ac.ir

Abstract—Nowadays, smartphones are ubiquitous sources

of private and confidential information. Among smartphones

operating systems, Android has become the most popular one

in recent years. Android applications have access to different

information which stored on the device so, may lead to

information leaks accidentally or maliciously. Leakages stem

from explicit or implicit information flows between

information sources and sinks. Finding explicit flows is fairly

simple whereas, implicit flows utilize more complicated

structures and are more difficult to discover, as a result. Most

existing tools ignore implicit flows or only consider special

structures that are similar to explicit form in nature such as if

and switch structures. In this paper we propose IIFDroid,

inter-component information flow control static analysis tool

which aims to detect information leaks generated by explicit

and various forms of implicit flows within an Android

application. Furthermore, we present test cases in order to

examine the effectiveness of IIFDroid against implicit flows

caused by more sophisticated structures like throw,

polymorphism and exception-prone instructions. The

experimental results on DroidBench and the developed test

cases show that IIFDroid outperforms existing tools IccTA and

JoDroid with 94.8% precision and 96.4% recall.

Keywords—Android Applications, Privacy Leaks,

Information Flow Control, Static Analysis, Inter-Component

Communication

I. INTRODUCTION

Today, Android applications play a decisive role in our
life. On average, each Android user installs 95 applications
on her phone and uses 35 of them on a daily basis [1]. These
apps have access to various sensitive information stored on
the device such as contacts, gallery, IMEI and may send
them to unwanted destinations without user consent or store
insecurely on the device. Private information leakage is one
of the mobile top ten risks reported by OWASP in 2016 [2].
Hence, some approaches are required to analyze
application’s behavior more accurately.

Based on the definition provided in [3], "privacy leaks
are paths from sensitive data, called sources, to statements
sending the data outside the application or device, called
sinks".

Leakages may happen inside a component or between
different components from one/different app(s). Privacy
leaks are due to explicit or implicit information flows
between sources and sinks [4]. Tracking explicit flows is
much simpler whereas, implicit flows are more sophisticated
and are neglected by most existing tools.

In this paper, we propose IIFDroid 1 , a precise Inter-
component Information Flow control static analysis tool for
Android applications aiming at discovering privacy leaks
within an app especially those that caused by implicit flows.

At first, IIFDroid employs precise static analysis
techniques to extract System Dependence Graph (SDG) of an
Android app representing explicit and implicit information
flows between program statements. Then, the backward
slices of sinks are computed to check whether information
with a higher security level reach sinks with lower security
levels or not. If so, a potential privacy leak will be reported.

The rest of the paper is organized as follows, in Section II
a brief background about Android app architecture, static
analysis challenges and various kinds of information flows
are given. Section III reviews existing work. In Section IV,
IIFDroid workflow is given then information flow control
analysis and IIFDroid architecture are explained. Section V
includes implementation details, Section VI shows
evaluation results and Section VII concludes the paper.

II. BACKGROUND

A. Android Application Architecture

Android apps adhere to a component-based architecture
[5]. There are four kinds of components: activity, service,
content provider and broadcast receiver.

Activities construct user interface of an app. Services do
not have user interface and are used to perform time-
consuming tasks in the background. Content providers act
analogous to a database and provide access to a constructed
set of data. Broadcast receivers listen to global events e.g.
battery is low.

1 Online available at: github.com/zohreb71/ATLAS-IFFDroid

https://github.com/zohreb71/ATLAS-IFFDroid

Components in an app or across different apps, utilize so-
called inter-component communication (ICC) methods to
communicate and exchange data. These methods take a
message named Intent or URI2 (in case of content providers)
as parameter. To handle ICC interactions, the target
component and transferred data need to be resolved.

Finally, every app consists a metadata file named
AndroidManifest.xml that keeps essential information like
permissions, components and action strings that each
component can process.

B. Static Analysis Challenges

Although there are different ways for Android app
development, IIFDroid only concentrates on those which are
developed using standard Google API in Java programming
language.

Despite these apps are written in Java, they compile into
dalvik bytecode. Retargeting tools like Dare [6] convert them
into java bytecode and give as input to existing java static
analysis frameworks. Nevertheless, there are fundamental
differences between Java and Android that make precise
modeling of Android app’s runtime behavior more
challenging.

Apps contain different components with a distinct
lifecycle [4]. They do not have a main method rather
Android runtime invokes various callback methods within
the app based on system events to start, pause, resume and
shutdown the app.

Furthermore, static analysis tools must regard system and
UI callbacks. Sometimes, UI contains sensitive information
sources like password fields. API calls which return their
content are not in the program code [7]. So, precise modeling
of metadata and layout xml files is also required.

To be precise, static analysis techniques must support
analysis sensitivities [8]. Flow sensitivity is the most
common one which takes the order of program statements
into account. Object sensitive and field sensitive static
analysis model each instance object of a class and each field
of an object individually. Eventually, in context sensitive
static analysis, each method call is modeled independently.

C. Information Flow Types

As mentioned earlier, leakages are due to information
flows between information sources and sinks which Android
app has access to. There are two types of information flows:
explicit and implicit. Explicit flows caused by data
dependency i.e. def-use relationship between program
variables. On the contrary side, implicit flows are the result
of control dependency between program statements [4]. For
instance, in Fig. 1-a, line 2 defines variable x which is used
in line 3. So, there is a data dependence between them,
whereas, in Fig. 1-b, x controls the execution of assignment
in line 5 and there is an implicit flow from x to y.

You et al. [9] studied Android bytecode comprehensively
to identify all possible forms of implicit flows. They applied
control-transfer-oriented semantic analysis on Android
bytecode and found 54 dalvik instructions that can induce
implicit flow. Finally, all founded instructions were
categorized into five classes based on their underlying

2 Uniform Resource Identifier

structure: if-based, switch-based, throw-based, exception-
prone-based and polymorphism-based. They presented
proof-of-concepts for each identified category to examine
their exploitability. An overview of proof-of-concepts is
shown in Fig. 2, each one consists of a 1-1 mapping between
private and public data.

1. void explicitFlow() {

2. int x = source ;

3. int y = 2 * x ;

4. sink (y) ;

5. }

1. void implicitFlow() {

2. int x = source ;

3. if (x < max)

4. {

5. int y = 2 * x ;

6. sink (y) ;

7. }

8. } (b)(a)

Fig. 1. Implicit vs. explicit flow

1. if (high== 0) low = 0 ;

2. else if (high== 1) low = 1 ;

1. switch (high) {

2. case 0 : low = 0 ; break ;

3. case 1 : low = 1 ; break ;

4. }

1. for (low = 0 ; low <= 9 ; low++) {

2. try { int tmp = 1 / (high- low); }

3. catch (Exception e) { break ; }

4. }

1. Exception except = excepts[high- 0];

2. try { throw except ; }

3. catch (Exception_0 e) {low = 0 ; }

4. catch (Exception_1 e) {low = 1 ; }

1. Class Poly_0 extends Poly {

2. char f() {return 0 ;}

3.

4. Poly poly = polys [high - 0];

5. Low = poly.f() ;

(a) (b)

(c) (d)

(e)

Fig. 2. Implicit information flow forms in Android bytecode [9]

III. RELATED WORK

Although privacy leak is the most covered vulnerability
among Android static analysis tools, only few studies have
noticed implicit flows [4].

FlowDroid [7] models component’s lifecycle by creating
a dummy main method and performs context, flow, field and
object-sensitive taint analysis to discover leakages within a
component precisely. Later, authors enhanced taint analysis
technique to detect leaks created by simple implicit flow
structures like if and switch. FlowDroid does not model ICC
communications and overapproximated inter-component
communications by taking each transferred data element as a
taint.

IccTA [3] adds a preprocessing step to FlowDroid in
order to discover inter-component leaks. It uses IC3 [10] to
build ICC links between different components. Then, it
instruments the app to connect components directly and
builds an Inter-procedural Control Flow Graph (ICFG) of the
whole Android app. At the end, it utilizes an enhanced
version of FlowDroid to perform inter-component taint
analysis. So, it is similar to FlowDroid in case of implicit
flows.

Joana [11] is a static information flow control analysis
tool for Java programs that aims to discover all security leaks
caused by explicit or various forms of implicit flows. Later in
2013 JoDroid [12], an Android front-end for Joana has been
proposed to discover all types of information leaks in
Android apps. Despite its goal, JoDroid runs into many
troubles in practice. It not only does not handle Android-
specific challenges such as precise lifecycle modeling but

also it is unable to recognize information sources and sinks
within an app accurately.

IV. OUR APPROACH

A. Proposed Method

The purpose of IIFDroid is discovering information leaks
caused by explicit and five-fold forms of implicit flows in
one component or between different components within an
Android app. To achieve this goal, IIFDroid adopts inter-
component information flow control static analysis.

The general workflow of IIFDroid is depicted in Fig. 3.
IIFDroid takes an Android app as input and outputs all
founded potential information leaks. It begins with
converting the app to an intermediate representation which is
suitable for future analysis. Then, it generates SDG of the
program (step 2) and annotates sources and sinks with
appropriate security levels (step 3).

1- Intermediate

Representation

Generation

2- SDG

Construction

3- SDG

Augmentation
4- IFC Analysis

Potential

Information Leaks

Fig. 3. General overview of IIFDroid process

Finally, information flow control analysis is performed in
step 4. Backward slice of sinks is calculated to check
whether it contains an information source with a higher or
non-comparable security level or not. Consequently, all
founded leaks are reported to the security analyst.

B. Information Flow Control Analysis

Information flow control (IFC) [11] is a known program
analysis technique for discovering security leaks in software.
Language-based IFC analysis aims to establish
noninterfernce. It takes program code (in source code or
bytecode) as input and checks whether it obeys
confidentiality and/or integrity.

Our IFC analysis technique uses SDG as the fundamental
structure. SDG is a standard data structure for modeling
information flows through a program. It includes Program
Dependency Graph (PDG) for each procedure of program
connected by the call, return and parameter passing edges.

SDG Nodes are program statements and predicates
connected by two types of edges: data-dependence which
models def-use relationship between variables, control-
dependence that represents control dependency between
nodes. We will explain IFC analysis technique in PDG. All
notions are the same as SDG. However, function call and
return relationship must be handled properly in SDG and
only so-called realizable paths should be taken into
consideration. Interested readers can refer to [11], [13] for
more information about SDG and slicing.

In a PDG G = (N, →), backward slice3 of x consists all
nodes possibly influencing x and is computed as:

3 Backward slices in SDG are calculated using a so-called HRB-slicing

[13]- a context-sensitive slicing algorithm- that handles function calls
properly.

 (1)

forward slice of x includes all nodes influenced by x:

 (2)

Noninterference needs more information about security

level of program statements. Thus, PDG is augmented by a
security level lattice. In practice, it is sufficient to specify
security level of input i.e. sources and output i.e. sinks
statements. Sources and sinks are annotated by a so-called
"provided security level" and "required security level"
respectively. Provided security level P(x) means that x sends
information with the provided security level or higher.
Required security level R(x) specifies that information with
smaller or equal security level can reach statement x.

Theorem 1 [11]: if

then confidentiality is maintained for all (dom(P) and

dom(R) represent set of sources and sinks respectively).

Based on theorem 1, information with a higher security

level should never reach a sink with lower or non-
comparable security level. Otherwise, a potential privacy

leak is revealed (). In this case, all responsible
nodes are denoted by a so-called chop and are computed as
follows:

  

C. IIFDroid Architecture

Fig. 4 presents a more detailed view of IIFDroid
architecture. Initially, Android app is converted into Jimple
bytecode via Dexpler [14]. Jimple is the main intermediate
representation of Soot framework [15] which is appropriate
for some specific analyses such as, points-to analysis, call
graph and control flow graph construction (step 1-a).

To uncover privacy leaks between components, we need
to consider inter-component communication. Accordingly,
we leverage IC3 and IccTA in combination. IC3 takes Jimple
representation as input and extracts all information about
ICC methods like intents, URIs, intent-filters and target
components. Besides, it stores all gathered information in a
mySQL database (step 2-a).

In step 3-a, IccTA reads the database to build ICC links.
Accordingly, IccTA instruments Jimple representation,
connect components directly and obtains one component
encompasses all components of the app. Additional analyses
take place in this step. UI callbacks are collected through
analyzing layout xml files. IIFDroid uses sources and sinks
lists provided by SuSi tool [16] to find information sources
and sinks in app. All application’s potential entry points are
extracted and used to construct a dummy main method as a
unique entry point. This unique entry point is adopted to
construct call graph of the app. At the end, ICFG of the app
is constructed that shows how control transfers between
different methods.

IIFDroid takes ICFG as input, build PDG of each
procedure and connect them based on call and return

relationship in ICFG to construct SDG of whole Android
application (step 4-a). Then, it annotates SDG by provided
security level of sources and required security level of sinks
(step 4-b). It acts based on theorem 1, traverses SDG and
calculates backward slice of sinks in a context-sensitive way
to detect potential privacy leaks (step 4-c).

ICC Links

Extraction
ICC

DB

Jimple

 + Jimple Instrumentatation

 + Callbacks

 + Sources/Sinks

 + Entry Points

 + Dummy Main Method

 + Call Graph

ICFG

SDG

Augmentation

IFC Analysis

PDG, SDG

Extraction

Potential Data

Leaks

3-a

1-a

2-a

4-a

4-b

4-c

Jimple Code

ICC Links

ICFG

Fig. 4. An overview of IIFDroid Architecture

V. IMPLEMENTATION

IIFDroid extends Soot as its core framework. Soot is a
Java static analysis framework which provides different
intermediate representations, precise call graph and a raw
PDG construction algorithm.

Jimple [15] is the base intermediate representation of
Soot which IIFDroid uses. It is a typed, stackless, 3-address
statement based intermediate representation that comprises
only 15 instruction and is much simpler than Java and
Android bytecode.

For precise modeling of app’s lifecycle, IIFDroid acts
like FlowDroid and IccTA by creating a dummy main
method which emulates a unique entry point. The dummy
main is taken as input by Spark, a precise call graph
construction algorithm in Soot to build call graph of Android
app. Afterwards, ICFG is constructed by IccTA and is given
to IIFDroid as input.

IIFDroid starts with traversing ICFG and building PDG
of each method encounters. The provided PDG in Soot is
block-based and only contains control dependency between
procedure’s basic blocks. IIFDroid extends PDG
construction process in 2 ways: (1) Constructs PDG with
Jimple instructions granularity, (2) Adds flow-sensitive data
dependence relationships between instructions.

Consider the code snippet in Fig. 5 that shows
MainActivity class of DirectLeak1 test case in DroidBench.
It reads IMEI in line. 10 and sends it via SMS.

We provided it as input to IIFDroid. The generated PDG
is depicted in Fig. 6. IIFDroid annotated getDeviceId() with
high as an information source and sendTextMessage() with
low as a sink. It contains a path from sensitive source to a
sink, transmitting information to outside the device. Thus, a
security leak is reported.

1. public class MainActivity extends Activity {

2. @Override

3.

4. protected void onCreate(Bundle savedInstanceState){

5. super.onCreate(savedInstanceState);

6. setContentView(R.layout.activity_main);

7. TelephonyManager mgr;

8. mgr = (TelephonyManager)this.getSystemService(TELEPHONY_SERVICE);

9. SmsManager sms = SmsManager.getDefault();

10. sms.sendTextMessage(+49 1234 , null, mgr.getDeviceId(), null, null);

11. }

12.}

Fig. 5: Direct Leak1

Entry

Region 0

$r1:=@parameter0:android.os.Bundle

specialInvoke $r0.<android.app.activity:

void onCreate(android.os.Bundle)>($r1)

$r0:=@this:de.ecspride.MainActivity

virtualInvoke $r0.<de.ecspride.MainActivity: void

setContentView(int)>(2130903040)

$r2=virtualInvoke $r0.<de.ecspride.MainActivity:java.lang.Object

getSystemService(java.lang.String)>(phone)

$r4=staticInvoke<androi.telephony.SmsManager:

android.telephony.SmsManager getDefault()>()
$r3=(android.telephony.TelephonyManager)$r2

$r5=virtualInvoke $r3.<android.telephony.TelephonyManager:

java.lang.String getDevideId()>()

virtualInvoke $r4.<android.telephony.SmsManager:void sendTextMessage

(java.lang.String,android.app.PendingIntent,android.app.PendingIntent)>

(+491234 ,null,$r5,null,null)

return

P=High

R=Low

Fig. 6. PDG of DirectLeak1

VI. EVALUATION

We evaluated and compared IIFDroid with FlowDroid,
IccTA and JoDroid on DroidBench and the developed test
cases4 to test for ICC and implicit flow leaks. The results are
shown in Table I.

DroidBench [17] is an Android-specific test suite
containing apps with known leaks which covers Android-
specific aspects like callbacks, interactions with UI elements
such as password fields, component’s lifecycle, inter-
component communications and Java-specific challenges
like lists, arrays, reflection and static fields.

Additionally, there are some implicit flow test cases in
DroidBench that only make use of if and switch structures.
Thus, we have designed three test cases which leak IMEI
using more complicated structures namely exception,
polymorphism and throw like Fig. 2-b,d,e. They are specified
with IIF-exception, IIF-Polymorphism and IIF-Throw in
Table I.

Table II compares each tool characteristics and
capabilities. For precise modeling of components lifecycle,
four items have been defined. According to our findings,
JoDroid only models Activity lifecycle properly. Moreover,
it does not analyze layout xml files and is not capable of
tracking UI information sources such as password fields.

FlowDroid overapproximates ICC communication and
generates many false alarms. FlowDroid and IccTA are
unable to discover implicit flows in sophisticated structures.
Although JoDroid has been designed to guarantee
noninterference in Android apps, it runs into many troubles

4 github.com/zohreb71/Implicit-Flow-Test-Cases

https://github.com/zohreb71/Implicit-Flow-Test-Cases

in practice. It does not even find information sources and
sinks properly within an Android app.

TABLE I. EVALUATION RESULTS
 = CORRECT WARNING,  = FALSE WARNING,  = MISSED LEAK

MULTIPLE SYMBOLS IN ONE ROW: MULTIPLE LEAKS EXPECTED
ALL EMPTY ROW: NO LEAKS EXPECTED, NON REPORTED

Test Case FlowDroid IccTA JoDroid IIFDroid

DirectLeak1    
InativeActivity 
LogNoLeak
PrivateDataLeak1    
PrivateDataLeak2    
ArrayAccess1   

ArrayAccess2  

ListAccess1  

AnonymousClass1    
Button1    

Button2 



 

LocationLeak1    
LocationLeak2    
MethodOverride1    
FieldSensitivity1

FieldSensitivity2

FieldSensitivity3    
FieldSensitivity4

ObjectSensitivity1

ObjectSensitivity2

Loop1    
Loop2    
SourceCodeSpecific1    
StartProcessWithSecr

et1
   

StaticInitialization1    
UnreachableCode 

ActivityLifeCycle1    
ActivityLifeCycle2    
ActivityLifeCycle3    
ActivityLifeCycle4    
BroadcastReceiver-

Lifecycle1
   

ServiceLifecycle1    
Reflection1    
Reflection2    
Reflection3    
startActivity1    

startActivity2



  

startActivity3  (32)   
startActivity4 

startActivity5 

startActivity6 

startActivity7   
startActivityForResul

t1
   

startActivityForResul

t2
   

startActivityForResul
t3

   

startActivityForResul

t4
   

startService1    
startService2    
bindService1    
bindService2    
bindService3    
bindService4    
sendBroadcast1    
insert1    
delete1    
update1    
query1    
Merge1   

ImplicitFlow1    
ImplicitFlow2    
ImplicitFlow3    
ImplicitFlow4    
IIF-Exception    
IIF-Throw    
IIF-Polymorphism    

Analysis Results

Precision (/(+)) 44.6% 89.6% 58.3% 94.8%

Recall (/(+)) 80.7% 91.2% 12.2% 96.4%

F-measure 0.57 0.9 0.2 0.95

All tools adopt flow and context-sensitive static analysis
to uncover potential privacy leaks precisely. Finally, they are
developed as an extension to existing Java static analysis
frameworks, Soot and WALA.

TABLE II. TOOLS COMPARISON

 = FULL SUPPORT, = LIMITED SUPPORT, =NO SUPPORT

Criteria FlowDroid IccTA JoDroid IIFDroid

Activities    
Services    
Content Providers    
Broadcast receivers    
UI Elements    
Inter-Component
Communication

   

Implicit flows    
Precise detection of

sources and sinks
   

Flow and Context

Sensitivity
   

Underlying

Framework
Soot Soot WALA Soot

CONCLUSIONS

In this paper, we have presented IIFDroid, a flow,
context, object and field sensitive information flow control
static analysis tool for Android apps which is able to uncover
privacy leaks induced by explicit or different forms of
implicit flows in an Andriod app. Our empirical findings
show that it outperforms existing tools FlowDroid, IccTA
and JoDroid with 94.8% precision and 96.4% recall.

Like existing tools, IIFDroid is unable to address static
analysis challenges such as dynamic code loading, reflective
call, native code and multithreading.

Privacy leaks are caused by different factors include extra
app’s permissions, advertisement libraries or developer
mistakes. Nonetheless, IIFDroid only makes attempt to
reveal potential privacy leaks in the most precise way. It does
not look for the reason. All founded leaks are reported to the
security analyst who can reason about them based upon
auxiliary information such as app’s permissions and
functionalities.

 Sometimes, Android apps co-operate to leak sensitive
information. IIFDroid neglects inter-app communication and
only models ICC within an application.

REFERENCES

[1] https://thenextweb.com/apps/2014/08/26/android-users-average-95-
apps-installed-phones-according-yahoo-aviate-data/. [Accessed: May-
2018].

[2] https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10.
[Accessed: May-2018].

[3] L. Li et al., “Iccta: Detecting Inter-Component Privacy Leaks in
Android apps”, In Proceedings of the 37th International Conference
on Software Engineering,Volume 1, pp. 280–291, 2015.

[4] B. Reaves et al., “* droid: Assessment and Evaluation of Android
Application Analysis Tools”, ACM Computing Surveys, vol. 49, no.
3, p. 55, 2016.

[5] https://developer.android.com/index.html. [Accessed: May-2018].

[6] D. Octeau, S. Jha, and P. McDaniel, “Retargeting Android
applications to Java bytecode”, In Proceedings of the 20th
International Symposium on the Foundations of Software
Engineering, p. 6, 2012.

[7] S. Arzt et al., “Flowdroid: Precise Context, Flow, Field, Object-
Sensitive and Lifecycle-aware Taint Analysis for Android Apps”,
Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269, 2014.

[8] L. Li et al., “Static analysis of android apps: A systematic literature
review”, Information and Software Technology, vol. 88, pp. 67–95,
2017.

[9] W. You et al., “Android Implicit Information Flow Demystified”, In
Proceedings of the 10th ACM Symposium on Information, Computer
and Communications Security, pp. 585–590, 2015.

[10] D. Octeau et al., “Composite Constant Propagation: Application to
Android Inter-Component Communication Analysis”, In Proceedings
of the 37th International Conference on Software Engineering, vol.1,
pp. 77–88, 2015.

[11] C. Hammer and G. Snelting, “Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program
dependence graphs”, International Journal of Information Security,
vol. 8, no. 6, pp. 399–422, 2009.

[12] M. Mohr et al., “JoDroid: Adding Android Support to a static
Information Flow Control Tool”, In Proceedings of CEUR Workshop,
vol.1337, pp. 140-145, 2015.

[13] S. Horwitz et al., “Interprocedural Slicing using Dependence Graphs”,
ACM Transactions on Programming Languages and Systems, vol. 12,
no. 1, pp. 26–60, 1990.

[14] A. Bartel et al, “Dexpler: Converting Android Dalvik Bytecode to
Jimple for Static Analysis with Soot”, In Proceedings of the ACM
SIGPLAN International Workshop on State of the Art in Java
Program analysis, pp. 27–38, 2012.

[15] A. Einarsson and J. D. Nielsen, “A survivor’s guide to Java program
analysis with soot”, BRICS Dep. Comput. Sci. Univ. Aarhus Den, p.
17, 2008.

[16] S. Rasthofer et al., “A Machine-learning Approach for Classifying
and Categorizing Android Sources and Sinks”, In Proceedings of 14th
Network and Distributed System Securit (NDSS), 2014.

[17] “DroidBench benchmark”, https://github.com/secure-software-
engineering/DroidBench. [Accessed: May-2018].

